

You roll a fair die until you be the number of rolls. Bou	see a 6. Let X The average number of ads is 2 und P(X≥12.) The variance is 16. Upper bound the prob. >= 75 ads.	
•• CHERNOFF BOUND X		
Let $X = \sum X_i$, and $\mu = \mathbb{I}$ $\mathbb{P}(X \le (1 - \delta)\mu) \le e^{\left(-\frac{\delta^2 \mu}{2}\right)}$ and LEFT TALL Requirements: 1. X is a sum of independent Bernoulli random variables. 2. We know $\mathbb{E}[X]$	<i>nt</i> Bernoulli random variables. $\mathbb{E}[X]$. For any $0 \le \delta \le 1$ and $\mathbb{P}(X \ge (1 + \delta)\mu) \le e^{\left(-\frac{\delta^2\mu}{3}\right)}$ <i>NIGHT TAIL</i> <i>Pople where 60% of true population supports you</i>	
	at the poll is not within 10% of the true value? = $\mathbb{P}(\bar{X} \le 0.5) + \mathbb{P}(\bar{X} \ge 0.7)$	$P(\overline{X} < 0.6)^{2} + P(\overline{X} > 0.7)^{2} + P(\overline{X} > 700)$ $P(X < 600) + P(\overline{X} > 700)$ $F(X > 600) + F(\overline{X} > 700)$ $F(\overline{X} > 700)$
••	UNION BOUND	×
For any events E, F $\mathbb{P}(E \cup F) \leq \mathbb{P}(E) + \mathbb{P}(F)$	Sometimes we don't' have enough information to compute this probability exactly, so we use the union bound to bound that probability	
There are 20 frogs on each location in a 5x5 grid. Each frog independently jumps to the L, R, U, D, or neither with equal probability. A frog at an edge of the grid magically warps to the corresponding edge (ignore "edge" cases). Bound the probability at least one square ends up with at least 36 frogs. 1. Apply Union Bound 2. Apply Chernoff Bound to bound each of P(Ai)		
3. Put it all together	$\frac{1 \rightarrow 1 \leftarrow 0}{20 \text{ frogs}}$	