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Logistics

> Catch-up/breather lecture on July 31st

> August 2nd and 5th will be MLEs

> After that, we’ll be going over some applications which will also allow 
us to have some more review and practice with the main course content



Today

> One more joint distribution example

> Covariance

> Conditional Distributions
   applying things we know about conditioning to random variables (and continuous)
   law of total expectation

> Tail Bounds
    Markov’s Inequality

    Chebyshev’s Ineqality

    Chernoff Bound

    (union bound)



Joint Support/Range - Ω𝑋,𝑌

We have two discrete random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑝𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌  

Joint PMF - 𝑝𝑋,𝑌(𝑎, 𝑏)
𝑝𝑋,𝑌 𝑎, 𝑏 = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏  

defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Joint CDF - F𝑋,𝑌(𝑎, 𝑏)
𝐹𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏  

defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Normalization Property:

σ 𝑎,𝑏 ∈ΩX,Y
𝑝𝑋,𝑌(𝑎, 𝑏) = 1 

Marginal PMF - 𝑝𝑋(𝑥), 𝑝𝑌(𝑦)
𝑝𝑋 𝑥 = σ𝑦∈Ω𝑌

𝑝𝑋,𝑌(𝑥, 𝑦)
𝑝𝑌 𝑦 = σ𝑥∈Ω𝑋

𝑝𝑋,𝑌(𝑥, 𝑦) 

Joint Expectation

𝔼 𝑔 𝑋, 𝑌 =
σ 𝑎,𝑏 ∈ΩX,Y

𝑔 𝑎, 𝑏  𝑝𝑋,𝑌(𝑎, 𝑏) 

Notice we’re summing 

over what the other RV 

can be

> 𝑝𝑋,𝑌 𝑎, 𝑏 = 𝑝𝑋 𝑎 ⋅ 𝑝𝑋(𝑏) for all 𝑎, 𝑏 ∈ Ω𝑋,𝑌

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌

Joint Independence



Joint Support/Range - Ω𝑋,𝑌

We have two continuous random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑓𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌  

Joint PDF - f𝑋,𝑌(𝑎, 𝑏)
𝑓𝑋,𝑌(𝑎, 𝑏) defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Joint CDF - F𝑋,𝑌(𝑎, 𝑏)
𝐹𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏  

defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Normalization Property:

∞−

∞
∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 = 1 

Marginal PDF - f𝑋(𝑥), f𝑌(𝑦)
𝑓𝑋 𝑥 = ∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑦 

𝑓𝑌 𝑦 = ∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 

Joint Expectation

𝔼 𝑔 𝑋, 𝑌 =

∞−

∞
∞−

∞
𝑔 𝑥, 𝑦  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 

Notice we’re integrating 

(summing) over what the 

other RV can be

> 𝑓𝑋,𝑌 𝑎, 𝑏 = 𝑓𝑋 𝑎 ⋅ 𝑓𝑋(𝑏) for all 𝑎, 𝑏 ∈ Ω𝑋,𝑌

> Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌

Joint Independence



Joint Probabilities

To find probability of 𝑋 and 𝑌 being in ranges, we use the joint distribution:

If 𝑿 and 𝒀 are discrete….

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 ∩ 𝑐 ≤ 𝑌 ≤ 𝑑 = σ𝑥∈𝑎≤𝑋≤𝑏 σ𝑦∈𝑐≤𝑌≤𝑑 𝑝𝑋,𝑌(𝑥, 𝑦)
sum over the joint PMF for all pairs of x and y that fall in this range

If 𝑿 and 𝒀 are continuous…

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 ∩ 𝑐 ≤ 𝑌 ≤ 𝑑 = 𝑎

𝑏
𝑐

𝑑
𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

integrate over the joint PDF for all pairs of x and y that fall in this range



Example: Continuous Servers 

The time until server 1 crashes is 𝑋~Exp(𝑢), and the time until server 2 
crashes is 𝑌~Exp(𝑣). Both servers are independent of each other. 

What is the probability server 1 crashes before server 2? 

ℙ 𝑋 < 𝑌 =

𝑥

𝑦

Fill out the poll everywhere: 

pollev.com/cse312



Example: Continuous Servers 

The time until server 1 crashes is 𝑋~Exp(𝑢), and the time until server 2 
crashes is 𝑌~Exp(𝑣). Both servers are independent of each other. 

What is the probability server 1 crashes before server 2? 

ℙ 𝑋 < 𝑌
= 0

∞
𝑥

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑦 𝑑𝑥 

= 0

∞
𝑥

∞
𝑓𝑋 𝑥 𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑥 by independence

𝑥

𝑦
𝑥 = 𝑦



Discrete vs. Continuous Joint Distributions
 



Covariance



Covariance

We sometimes want to measure how “intertwined” 𝑋 and 𝑌 are – how 
much knowing about one of them will affect the other.

Cov(𝑋, 𝑌) measure the dependence between 𝑋 and 𝑌

> Covariance is positive -> they are positively correlated
    If X increases, 𝑌 tends to also increase

> Covariance is negative -> they are negatively correlated
    If 𝑋 increases, 𝑌 tends to decrease

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀] 

Covariance



Properties of Covariance

If X and 𝑌 are independent, what is Cov(𝑋, 𝑌)? 𝟎.
because 𝔼 𝑿𝒀 = 𝔼 𝑿 𝔼 𝒀  if independent

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀] 

Covariance

This isn’t always true the other way! The are some dependent random 

variables 𝑋 and 𝒀 where Cov 𝑋, 𝑌 = 0



Properties of Covariance

> Cov X, Y = Cov Y, X

> Cov X, X = Var 𝑋
    because when you plug in 𝑋, 𝑋 above, we get 𝔼 𝑋 − 𝔼 𝑋 2  which is the variance

> Cov aX + b, Y = a ⋅ Cov X, Y
    linearity of expectation

> Cov(σ𝑖=1
𝑛 𝑋𝑖 , σ𝑗=1

𝑚 𝑌𝑗) = σ𝑖=1
𝑛 σ𝑗=1

𝑚 Cov(𝑋𝑖 , 𝑌𝑗)

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀] 

Covariance



Covariance used for variance of a sum

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌)

^ we do not need 𝑋 and 𝑌 to be independent to use this formula! 

Proof:

Var 𝑋 + 𝑌
= Cov(𝑋 + 𝑌, 𝑋 + 𝑌) 
= Cov 𝑋, 𝑋 + Cov 𝑋, 𝑌 + Cov 𝑌, 𝑋 + Cov 𝑌, 𝑌   
= Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌) 



Covariance used for variance of a sum

You and your friend are playing a game, you flip a coin: if heads you 
pay your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your 
profit and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?

Before you calculate, make a 

prediction. What should it be?

Cov X, Y = 𝔼 𝑋 − 𝔼 𝑋 (𝑌 − 𝔼 𝑌 ) = 𝔼 𝑋𝑌 − 𝔼[𝑋]𝔼[𝑌] 

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌)

Fill out the poll everywhere: 

pollev.com/cse312



Covariance used for variance of a sum

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?

Var 𝑋 = Var 𝑌 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 1 − 02 = 1

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼[𝑋]𝔼[𝑌]

𝔼 𝑋𝑌 =
1

2
⋅ −1 ⋅ 1 +

1

2
1 ⋅ −1 = −1

Cov 𝑋, 𝑌 = −1 − 0 ⋅ 0 = −1.

Var 𝑋 + 𝑌 = 1 + 1 + 2 ⋅ −1 = 0



Covariance

The magnitude of covariance is affected by the units of the random 
variables involved because Cov 2𝑋, 𝑌 = 2Cov 𝑋, 𝑌 , so we can’t really 
compare and it’s not very helpful
is covariance big because of the units or because of a very strong relationship?

The sign of the covariance (positive or negative) is helpful but it only 
tells us the direction.

We want to understand the strength of the relationship! 



Pearson Correlation (normalized covariance!)

To understand the strength, we normalize the covariance!

  > divide the covariance by the product of the standard deviation of 𝑋 
     and the standard deviation of 𝑌

  > a value in the range −1 ≤ 𝜌(𝑋, 𝑌) ≤ 1
     −1 means STRONG negative correlation, +1 means STRONG positive correlation

Pearson correlation: 𝜌(𝑋, 𝑌) =
Cov 𝑋,𝑌

𝜎𝑋⋅𝜎𝑌
=

Cov 𝑋,𝑌

Var 𝑋 Var 𝑌



Pearson Correlation (normalized covariance!)



https://xkcd.com/552/



Some Miscellaneous Topics…

Extending things we’ve learned about before to 

random variables (and the continuous case)



Conditional Distributions
More formulae…but really, explicitly shifting our 

knowledge of conditional probability to random variables



Conditional PMFs/PDFs

Waaaaaay back, we said conditioning on an event creates a new 
probability space, with all the laws holding.

When we look at 𝑿|𝑨 where 𝑨 is some event, we’re redefining a random 
variable 𝑿 inside that restricted probability space conditioning on 𝑨

Conditional PMF: 𝑝𝑋|𝑌 𝑎 𝑏 = ℙ 𝑋 = 𝑎 𝑌 = 𝑏 =
𝑝𝑋,𝑌 𝑎,𝑏

𝑝𝑌(𝑏)
=

𝑝𝑌|𝑋 𝑏,𝑎  𝑝𝑋(𝑎)

𝑝𝑌(𝑏)
 

Conditional PDF: 𝑓𝑋|𝑌 𝑎 𝑏 =
𝑓𝑋,𝑌 𝑎,𝑏

𝑓𝑌(𝑏)
=

𝑓𝑌|𝑋 𝑏,𝑎  𝑓𝑋(𝑎)

𝑓𝑌(𝑏)
 



Conditional Expectation

Waaaaaay back when, we said conditioning on an event creates a new 
probability space, with all the laws holding.

So, we can define things like “conditional expectations” which is the 
expectation of a random variable in that new probability space.

𝔼 𝑋 𝐴 = 

𝑘∈Ω

𝑘 ⋅ ℙ(𝑋 = 𝑘|𝐴)

𝔼 𝑋 𝑌 = 𝑦 = σ𝑘∈Ω𝑋
𝑘 ⋅ ℙ 𝑋 = 𝑘 𝑌 = 𝑦  

 or 𝔼 𝑋 𝑌 = 𝑦 = ∞−

∞
𝑘 ⋅ 𝑓𝑋|𝑌 𝑘, 𝑦  𝑑𝑘 if continuous

Recall… 𝔼[𝑋] =
σ𝑥∈Ω 𝑥 ⋅ ℙ(𝑋 = 𝑥)

or if continuous, 
𝔼[𝑋]

= න
−∞

∞

𝑘 ⋅ 𝑓𝑋 𝑘  𝑑𝑥



Conditional Expectation

All your favorite theorems are still true. 

For example, linearity of expectation still holds

𝔼 (𝑎𝑋 + 𝑏𝑌 + 𝑐) 𝐴] = 𝑎𝔼 𝑋 𝐴 + 𝑏𝔼 𝑌 𝐴 + 𝑐



Law of Total Expectation (LTE)

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒌 be a partition of the sample space, then

 𝔼[𝑋] = 
𝑖=1

𝑛

𝔼 𝑋 𝐴𝑖 ℙ(𝐴𝑖)

Let 𝑿, 𝒀 be discrete RVs, then, 

 𝔼[𝑋] = 
𝑦∈Ω𝑌

𝔼 𝑋 𝑌 = 𝑦 ℙ(𝑌 = 𝑦)

Similar in form/idea to law of total probability, and the proof goes that 

way as well.

𝑿, 𝒀 are continuous RVs, then,

 𝔼[𝑋] = න
−∞

∞

𝔼 𝑋 𝑌 = 𝑦 𝑓𝑌(𝑦)



LTE Example: Exponential Coins

You flip 2 (independent, fair coins). 𝑋 is the number of heads. Then, the 
random variable 𝑌 follows the distribution Exp(𝑋 + 1). 

What is 𝔼[𝑌]?

𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 



LTE Example: Exponential Coins

You flip 2 (independent, fair coins). 𝑋 is the number of heads. Then, the 
random variable 𝑌 follows the distribution Exp(𝑋 + 1). 

What is 𝔼[𝑌]?

𝔼 𝑌

= 𝔼 𝑌 𝑋 = 0 ℙ 𝑋 = 0 + 𝔼 𝑌 𝑋 = 1 ℙ 𝑋 = 1 + 𝔼 𝑌 𝑋 = 2 ℙ 𝑋 = 2

𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 



LTE Example: Exponential Coins

You flip 2 (independent, fair coins). 𝑋 is the number of heads. Then, the 
random variable 𝑌 follows the distribution Exp(𝑋 + 1). 

What is 𝔼[𝑌]?

𝔼 𝑌

= 𝔼 𝑌 𝑋 = 0 ℙ 𝑋 = 0 + 𝔼 𝑌 𝑋 = 1 ℙ 𝑋 = 1 + 𝔼 𝑌 𝑋 = 2 ℙ 𝑋 = 2

= 𝔼 𝑌 𝑋 = 0 ⋅
1

4
+ 𝔼 𝑌 𝑋 = 1 ⋅

1

2
+ 𝔼 𝑌 𝑋 = 2 ⋅

1

4

=
1

0+1
⋅

1

4
+

1

1+1
⋅

1

2
+

1

2+1
⋅

1

4
=

7

12
.

𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 



LTE Example: Elevator Rides

The number of people who enter an elevator on the ground floor is 𝑋~Poi(10). 
There are 𝑁 floors above the ground floor, and each person is equally likely to get 
off at any of the 𝑁 floors, independently of others.  What is the expected number of 
stops the elevator will make before discharging all the passengers?

𝑌 is the number of stops the elevator makes. What is 𝔼[𝑌]?

Again, 𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 



LTE Example: Elevator Rides

The number of people who enter an elevator on the ground floor is 𝑋~Poi(10). 
There are 𝑁 floors above the ground floor, and each person is equally likely to get 
off at any of the 𝑁 floors, independently of others.  What is the expected number of 
stops the elevator will make before discharging all the passengers?

𝑌 is the number of stops the elevator makes. What is 𝔼[𝑌]?

𝔼 𝑌 = σ𝑘=0
∞ 𝔼[𝑌|𝑋 = 𝑘] ℙ 𝑋 = 𝑘 = σ𝑘=0

∞ 𝔼[𝑌|𝑋 = 𝑘] 𝑒−10 10𝑖

𝑖!

Again, 𝑌 depends on what the value of 𝑋 is. So, use LTE, partitioning on 𝑋. 



Law of Total Probability

We’ve seen law of total probability before. We can use the notation 
we’ve learned to write LoTP for random variables: 

Let 𝑿, 𝒀 be discrete RVs, then, 

 𝑝𝑋(𝑥) = 
𝑦∈Ω𝑌

𝑝𝑋|𝑌(𝑥|𝑦)ℙ(𝑌 = 𝑦)

𝑿, 𝒀 are continuous RVs, then,

 𝑓𝑋 𝑥 = න
−∞

∞

𝑓𝑋|𝑌(𝑥|𝑦) 𝑓𝑌(𝑦)



Tail Bounds



What’s a Tail Bound?

The “tails” of a probability 
distribution are the extreme regions 
to the left or right of the expectation
e.g., the shaded regions 𝑋 ≤ 𝜇 − 𝑘 and 
𝑋 ≥ 𝜇 + 𝑘 are “tails” of the distribution                                      



What’s a Tail Bound?

The “tails” of a probability 
distribution are the extreme regions 
to the left or right of the expectation
e.g., the shaded regions 𝑋 ≤ 𝜇 + 𝑘 and 
𝑋 ≥ 𝜇 − 𝑘 are “tails” of the distribution                                      

Often, we want to make some guarantees about the probability of 
being in a tail is (e.g., ℙ 𝑋 ≥ 𝑘 ≤ ? ?)
guarantees about the running time (the chance of being > 5sec is no more than __)



What’s a Tail Bound?

The “tails” of a probability 
distribution are the extreme regions 
to the left or right of the expectation
e.g., the shaded regions 𝑋 ≤ 𝜇 + 𝑘 and 
𝑋 ≥ 𝜇 − 𝑘 are “tails” of the distribution                                      

Often, we want to make some guarantees about the probability of 
being in a tail is (e.g., ℙ 𝑋 ≥ 𝑘 ≤ ? ?)
guarantees about the running time (the chance of being > 5sec is no more than __)

A tail bound (or concentration inequality) is a statement that bounds the 

probability in the “tails” of the distribution (e.g., there’s little probability far from 

the center) or (equivalently) the probability is concentrated near the expectation.



What’s a Tail Bound?

A tail bound (or concentration inequality) bounds the probability in the “tails” of 

the distribution. e.g., statements like ℙ 𝑋 ≥ 4 ≤ 0.8, ℙ 𝑋 ≥ 4 ≤ 0.8



What’s a Tail Bound?

A tail bound (or concentration inequality) bounds the probability in the “tails” of 

the distribution. e.g., statements like ℙ 𝑋 ≥ 4 ≤ 0.8, ℙ 𝑋 ≥ 4 ≤ 0.8

We’ve seen this before! We can: 

• Compute these probabilities exactly in 
some cases

• Approximate 𝑋 as normal using CLT if 𝑋 is 
the sum of a bunch of i.i.d random variables



What’s a Tail Bound?

A tail bound (or concentration inequality) bounds the probability in the “tails” of 

the distribution. e.g., statements like ℙ 𝑋 ≥ 4 ≤ 0.8, ℙ 𝑋 ≥ 4 ≤ 0.8

We’ve seen this before! We can: 

• Compute these probabilities exactly in 
some cases

• Approximate 𝑋 as normal using CLT if 𝑋 is 
the sum of a bunch of i.i.d random variables

But what if we barely know anything about 𝑋 and it doesn’t fit into the 

frameworks we’ve learned about? Can we still make some tail bound guarantees?



Tail Bounds

We’re going to learn about 3 tail bounds that we can use when all we 
know about 𝑋 is it’s expected value and/or variance: 

• Markov’s Inequality 

• Chebysev’s Inequality

• Chernoff Bound 



Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝐤 > 𝟎

ℙ 𝑿 ≥ 𝒌𝔼[𝑿] ≤
𝟏

𝒌

Markov’s Inequality

Two statements are equivalent. 

Left form is often easier to use. 

Right form is more intuitive.

Requirements: 

1. 𝑋 must be non-negative

2. We know the expectation of 𝑋





Proof

𝔼 𝑋 = 𝔼 𝑋 𝑋 < 𝑡 ℙ 𝑋 < 𝑡 + 𝔼 𝑋 𝑋 ≥ 𝑡 ℙ 𝑋 ≥ 𝑡

  ≥ 𝔼 𝑋 𝑋 ≥ 𝑡 ℙ 𝑋 ≥ 𝑡

         ≥ 𝑡 ⋅ ℙ 𝑋 ≥ 𝑡

Doing some algebra…we get exactly
what’s in Markov’s inequality! → 

𝔼 X X ≥ t ℙ X ≥ t ≥ 0 if X is non-negative 

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

𝔼 𝑋 ≥ 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)



Example: Let’s see how good this bound is…

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. Bound the probability that 𝑋 ≥ 12.

𝑋~Geo
1

6
, so 𝔼 𝑋 = 1/(

1

6
) = 6

Applying Markov’s Inequality…

ℙ 𝑋 ≥ 12 ≤
𝔼 𝑋

12
=

6

12
=

1

2
Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: Let’s see how good this bound is…

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. Bound the probability that 𝑋 ≥ 12.

𝑋~Geo
1

6
, so 𝔼 𝑋 = 1/(

1

6
) = 6

Applying Markov’s Inequality…

ℙ 𝑋 ≥ 12 ≤
𝔼 𝑋

12
=

6

12
=

1

2

Exact probability?

1 − ℙ 𝑋 < 12 ≈ 1 − 0.865 = 0.135

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more 
ads.

ℙ 𝑋 ≥ 75 ≤
𝔼 𝑋

75
=

25

75
=

1

3

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example: More Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more 
ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Fill out the poll everywhere: 

pollev.com/cse312



Example: More Ads 

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more 
ads.

ℙ 𝑋 ≥ 20 ≤
𝔼 𝑋

20
=

25

20
= 1.25 

Well, that’s…true. Technically.

But without more information we couldn’t hope to do much better. What 
if every page gives exactly 25 ads? Then the probability really is 1.



So…what do we do?

A better inequality!

We’re trying to bound the tails of the distribution. 

What parameter of a random variable describes the tails?

The variance!



Upper vs. Lower Bound

If we find something like ℙ 𝐴 ≤ 𝑏, we found an upper bound
This highest/”uppermost” value the probability of 𝐴 could be is 𝑏

If we find something like ℙ 𝐴 ≥ 𝑏, we found a lower bound
This lowest/smallest value the probability of 𝐴 could be is 𝑏
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