

CLT EXPAMPLE (DOING IT IN REVERSE)

X

A cereal company claims that their boxes contain an average of 500 grams of cereal with a variance of 100 grams. To test this claim, you take a random sample of *n* boxes. You want to determine the sample size *n* such that the probability of the sample mean being within 2 grams of the true mean (i.e., between 498 grams and 502 grams) is at least 95%.

1. Setup the Problem. 🛛

2. Apply CLT

3. Compute Probability

Reverse z-table Lookup

In problems where we need to find the value of something that will make certain probability statement hold, we may follow the same CLT steps, but then do a reverse z-table lookup Phi(c)=0.975 ---> "what value do we plug into the z table to get 0.95?" --> Phi^-1(0.975)=1.96

JOINT DISTRIBUTIONS

	Continuous
Joint PMF/PDF	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
Joint CDF	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}(x,y)dxdy=1$
Marginal PMF/PDF	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
	·

Replace sums with integrals, PMF with PDF