more CLT + joint distributions

LECTURE 16 &
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reverse table lookup
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T CLT EXPAMPLE (DOING IT IN REVERSE) X |

A cereal company claims that their boxes contain an average of 500 grams of cereal with a
variance of 100 grams. To test this claim, you take a random sample of n boxes. You want to
determine the sample size n such that the probability of the sample mean being within 2 grams
of the true mean (i.e, between 498 grams and 502 grams) is at least 95%.

1. Setup the Problem. X
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2. Apply CLTX

3. Compute Probability

Reverse z-table Lookup

In problems where we need to find the value of something that will make certain probability
statement hold, we may follow the same CLT steps, but then do a reverse z-table lookup
Phi(c)=0.975 ---> “what value do we plug into the z table to get 0.95?" --> PhiA-1(0.975)=1.96




JO'NT DlSTRlBU"ONS Random experiment. Roll two 4-sided fair.

7 ~ X and Y are the values of each of the rolls.
X JOINT SUPPORT %

Joint Support of Xand Y:
Set of pairs of values X and Y can be at the same time

Q, ., =
QX,Y —_ {(a, b) H ley(a, b) > 0] E QX X QY XY Pxy
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Probabilities of X and Y being certain values Uis'the min Vallié"of thé'two dice min(Xy)"™

V is the max viaue of the two dice max(X,Y)

pry(@b) =P(X =anV =0) =P =a,V =D)|I,4int support of Uand V:

should be defined for all values of a and b
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FX’Y(a,b) =PX<anY<h)=PX <a,V <bh)
Lshou[d be defined for all values of a and b
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U and W are NOT
independent because

(oo JOINT INDEPENDENCE % )1 Ouw =0y x 0

X and Y are independent if:
> pxy(a,b) = px(a) - px(b) for all (a,b) € Qxy
> Oy = Qx X Qy
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Suppose we didn't know how to compute the PMF
e MARGlNAl PMI: P S Io?or U. Can we derive it from the joFi)nt PMF?
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(oo JOINT EXPECTATION % |

EgXnl= ) g(ab) pxy(ab)
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(CONTINUOUS) JOINT DISTRIBUTIONS
: Continuous X and Y are coordinates of the where the dart lands at.
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Replace sums with integrals, PMF with PDF | Y ¥y . x



