
Joint Probability + Other Stuff!
CSE 312 24Su

Lecture 16

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Announcements

HW5 released tonight

Midterm grades and solutions released
“Where grades stand” post later this week

-Feel free to set up a short meeting with me to discuss concerns.

-Useful if you’re worried about hitting particular targets.

-Also useful if your midterm grade was very different from your homework scores.



Today

> Central Limit Theorem (CLT) – one more use case!

> Analyzing Relationships Between Multiple Random Variables
      > Joint Distributions (joint support, joint PMF, etc.)

      > Covariance



Central Limit Theorem (Review)

“The sum of any independent random variables approaches a normal 
distribution. It becomes closer to normal/the approximation gets better 
as we sum more RVs together.”

If 𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d. random variables, each with mean 𝝁 and variance 𝝈𝟐 

Let 𝑌𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

As 𝒏 → ∞, 𝒀𝒏 approaches a normal distribution 𝒩(𝒏 ⋅ 𝝁, 𝒏 ⋅ 𝝈𝟐)
(i.e., CDF of 𝒀𝒏 converges to the CDF of 𝒩(𝒏 ⋅ 𝝁, 𝒏 ⋅ 𝝈𝟐))

Central Limit Theorem



Outline of CLT steps

1. Setup the problem (e.g., 𝑋 = σ𝑖=1
𝑛 𝑋𝑖 , 𝑋𝑖 are i.i.d., and we want ℙ(𝑋 ≤ 𝑘))

   Write event you are interested in, in terms of sum of random variables.

     Apply continuity correction here if RVs are discrete.

2. Apply CLT (e.g., approx 𝑋 as 𝑌~𝒩(𝑛𝜇, 𝑛𝜎2) -> ℙ 𝑋 ≤ 𝑘 ≈ ℙ 𝑌 ≤ 𝑘
    Approximate sum of RVs as normal with appropriate mean and variance

from here, we’re working with a normal distribution, which we’ve worked with before!

3. Compute probability approximation using Phi table

     > Standardize  (𝑍 =
𝑁−𝜇

𝜎
) -> ℙ 𝑌 ≤ 𝑘 = ℙ

𝑌−𝜇

𝜎
≤

𝑘−𝜇

𝜎
= ℙ 𝑍 ≤

𝑘−𝜇

𝜎

     > Write in terms of 𝛷 𝑧 =  ℙ(Z ≤ 𝑧)

     > Look up in table



What if we are asked something like…

> How people need to be surveyed to draw __ conclusion about 
[something to do with a sum of i.i.d RVs’ with __ probability? 

> How many trials should we do till the average amount from the trails 
[sum of i.i.d RVs] is __ away from the mean with __ probability?  

> What should the standard deviation be in order for the probability of 
[something to do with a sum of i.id. RVs] to be ___?

We will follow the exact same process as before for using CLT! Except now, we’ll 

end up with something like ℙ 𝑌 ≤ 𝑐 = 0.96 where we need to solve for 𝑐



Cereal
A cereal company claims that their boxes contain an average of 500 grams of cereal with a 
variance of 100 grams. To test this claim, you take a random sample of 𝑛 boxes. You want to 
determine the sample size 𝑛 such that the probability of the sample mean being within 2 
grams of the true mean (i.e., between 498 grams and 502 grams) is at least 95%.

1. Setup the Problem. 

2. Apply CLT

3. Compute Probability

(
𝑋𝑖

𝑛
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Some more practice with that reverse z-table lookup step!

> What value of 𝑐 such that Φ 𝑐 = 0.76?

    

> What condition on 𝑐 so that Φ 𝑐 ≥ 0.94?

> What condition on 𝑐 so that Φ 𝑐 ≤ 𝑖𝑐𝑘 0.94?

once we have that expression, we solve for whatever we’re interested in 𝒄! 





Some more practice with that reverse z-table lookup step!

> What value of 𝑐 such that Φ 𝑐 = 0.76?

    𝑐 ≈ 0.53 (it’s an estimate, it gives us a value that’s pretty close to 0.76)

    some write this as 𝚽−𝟏 𝟎. 𝟕𝟔 ≈ 𝟎. 𝟓𝟑

> What condition on 𝑐 so that Φ 𝑐 ≥ 0.94?

    Φ 1.56 = 0.94062. 1.56 is the first value that gives us a value ≥ 0.94 

    So, if 𝒄 ≥ 𝟏. 𝟓𝟔, Φ 𝑐 ≥ 0.94 

> What condition on 𝑐 so that Φ 𝑐 ≤ 0.94?

    Now, if we want the probability ≤ 0.94, 𝒄 ≤ 𝟏. 𝟓𝟓 because Φ 1.55 = 0.93943
     if we said 𝑐 ≤ 1.56 that would include Φ 1.56 = 0.94062 > 0.94 and values that give 

     probability between 0.94 and 0.94062

once we have that expression, we solve for whatever we’re interested in 𝒄! 



When to use CLT

Use the CLT when:

•The random variable you’re interested in is the sum of independent 
random variables.

•The random variable you’re interested in does not have an easily 
accessible or easy to use pmf/pdf (or the question you’re asking 
doesn’t lend it self to easily using the pmf/pdf) 

•You only need an approximate answer, and the sum is of at least a 
moderate number of random variables.



Relationships between Multiple Random Variables



Analyzing Multiple Random Variables

So far, we’ve pretty much only analyzed one random variable at a time 
We’ve worked with multiple random variables (e.g., the sum of them) but haven’t 
really analyzed their relationships except for independence

Today, we will talk about analyzing the relations between multiple RVs

> Joint Distributions
    Joint PMF/PDF, Joint CDF, Joint Expectation

> Covariance
Quantitative property measuring relationship/dependence of the two RVs



Analyzing Multiple Random Variables

Examples: 

• Economics: Analyzing the relationship between stock returns and 
volume helps in understanding market behavior and making 
investment decisions 

• Healthcare: Understanding how different factors (like blood pressure 
and cholesterol levels) affects the probability of medical conditionals

• Machine learning: understanding how different features contribute to 
predicting a label and improving model accuracy (what features are 
most important)

• Recommendation systems: Understanding relationship between user 
preferences and item features to improve recommendation systems, or 
other factors like age and choices of products



Joint Distributions

We’ll start with the discrete case



We have two discrete random variables 𝑋 and 𝑌 
(that may or may not be independent)



Joint Support/Range - Ω𝑋,𝑌

We have two discrete random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 is the set of all possible pairs of values 𝑋 and 𝑌 can be together

> Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑝𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌 



Joint Support/Range - Ω𝑋,𝑌

We have two discrete random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 is the set of all possible pairs of values 𝑋 and 𝑌 can be together

> Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑝𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌 

Joint PMF(probability mass function)- p𝑋,𝑌(𝑎, 𝑏)
p𝑋,𝑌(𝑎, 𝑏) defines probabilities of 𝑋 and 𝑌 being certain values at once

> 𝑝𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 = 𝑎 ∩ 𝑌 = 𝑏 = ℙ 𝑋 = 𝑎, 𝑌 = 𝑏
   should be defined for all values of 𝑎 and 𝑏

Normalization Property: 
𝑎,𝑏 ∈Ω𝑋,𝑌

𝑝𝑋,𝑌 𝑎, 𝑏 = 1



Joint Support/Range - Ω𝑋,𝑌

We have two discrete random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 is the set of all possible pairs of values 𝑋 and 𝑌 can be together

> Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑝𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌 

Joint PMF(probability mass function)- p𝑋,𝑌(𝑎, 𝑏)
p𝑋,𝑌(𝑎, 𝑏) defines probabilities of 𝑋 and 𝑌 being certain values at once

> 𝑝𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 = 𝑎 ∩ 𝑌 = 𝑏 = ℙ 𝑋 = 𝑎, 𝑌 = 𝑏
   should be defined for all values of 𝑎 and 𝑏

Joint CDF(cumulative distribution function)- F𝑋,𝑌(𝑎, 𝑏)
> 𝐹𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 ≤ 𝑎 ∩ 𝑌 ≤ 𝑏 = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏
   should be defined for all values of 𝑎 and 𝑏



(Joint) Independence

We have two discrete random variables 𝑋 and 𝑌 
(that may or may not be independent)

𝑋 and 𝑌 are independent if:  

> 𝑝𝑋,𝑌 𝑎, 𝑏 = 𝑝𝑋 𝑎 ⋅ 𝑝𝑋(𝑏) for all 𝑎, 𝑏 ∈ Ω𝑋,𝑌

> Ω𝑋, = Ω𝑋 × Ω𝑌
   if you find that Ω𝑋,𝑌 ≠ Ω𝑋 × Ω𝑌, that is enough to show that they aren’t independent

This is the same definition we’ve seen before for independence of random variables

ℙ 𝑋 = 𝑎, 𝑌 = 𝑏 = ℙ 𝑋 = 𝑎 ⋅ ℙ(𝑋 = 𝑏)



Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑋 be the value of the 1st dice
Let 𝑌 be the value of the 2nd dice

Ω𝑋 = Ω𝑌 = {1,2,3,4}

The joint support is Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌
because all combinations are possible

What is the joint PMF?

𝑝𝑋,𝑌 𝑎, 𝑏 =

𝑝𝑋,𝑌 𝒀=1 𝒀=2 𝒀=3 𝒀=4

𝑿=1

𝑿=2

𝑿=3

𝑿=4
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Let 𝑌 be the value of the 2nd dice

Ω𝑋 = Ω𝑌 = {1,2,3,4}

The joint support is Ω𝑋,𝑌 = Ω𝑋 × Ω𝑌
because all combinations are possible

What is the joint PMF?

𝑝𝑋,𝑌 𝑎, 𝑏 = ቊ
Τ1 16  if 𝑎, 𝑏 ∈ Ω𝑋,𝑌

0 otherwise
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𝑿=1 1/16 1/16 1/16 1/16
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𝑿=4 1/16 1/16 1/16 1/16



Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌
Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Ω𝑈 = Ω𝑊 = {1,2,3,4}

The joint support is:

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4
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Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Ω𝑈 = Ω𝑊 = {1,2,3,4}

The joint support is:
Ω𝑈,𝑊 = { 𝑢, 𝑤 ∈ Ω𝑈 × Ω𝑊; 𝑢 ≤ 𝑤} 

What is the joint PMF?

𝑝𝑈,𝑊 𝑢, 𝑤 = 

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4
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Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌
Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Ω𝑈 = Ω𝑊 = {1,2,3,4}

The joint support is:
Ω𝑈,𝑊 = { 𝑢, 𝑤 ∈ Ω𝑈 × Ω𝑊; 𝑢 ≤ 𝑤} 

What is the joint PMF?

𝑝𝑈,𝑊 𝑢, 𝑤 = ቐ

Τ1 16  if 𝑢, 𝑤 ∈ Ω𝑈,𝑊 and 𝑢 = 𝑤

Τ2 16  if 𝑢, 𝑤 ∈ Ω𝑈,𝑊 and 𝑢 < 𝑤

0 otherwise

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4

𝑼=1 1/16 2/16 2/16 2/16

𝑼=2 0 1/16 2/16 2/16

𝑼=3 0 0 1/16 2/16

𝑼=4 0 0 0 1/16
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Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌
Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Ω𝑈 = Ω𝑊 = {1,2,3,4}

The joint support is:
Ω𝑈,𝑊 = { 𝑢, 𝑤 ∈ Ω𝑈 × Ω𝑊; 𝑢 ≤ 𝑤} 

What is the joint PMF?

𝑝𝑈,𝑊 𝑢, 𝑤 = ቐ

Τ1 16  if 𝑢, 𝑤 ∈ Ω𝑈,𝑊 and 𝑢 = 𝑤

Τ2 16  if 𝑢, 𝑤 ∈ Ω𝑈,𝑊 and 𝑢 < 𝑤

0 otherwise

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4

𝑼=1 1/16 2/16 2/16 2/16

𝑼=2 0 1/16 2/16 2/16

𝑼=3 0 0 1/16 2/16

𝑼=4 0 0 0 1/16

𝑈 and 𝑊 are NOT 
independent because 
Ω𝑈,𝑊 ≠ Ω𝑈 × Ω𝑊



Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌 . Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Suppose I didn’t know how to compute 𝑝𝑈 𝑢 = ℙ(𝑈 = 𝑢) directly. 
Can we find it from the joint PMF 𝑝𝑈,𝑉(𝑢, 𝑣)?

We know ℙ 𝑈 = 1 ∩ 𝑉 = 𝑣  for all 𝑣…

ℙ 𝑈 = 1
= 

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4

𝑼=1 1/16 2/16 2/16 2/16

𝑼=2 0 1/16 2/16 2/16

𝑼=3 0 0 1/16 2/16

𝑼=4 0 0 0 1/16



Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌 . Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Suppose I didn’t know how to compute 𝑝𝑈 𝑢 = ℙ(𝑈 = 𝑢) directly. 
Can we find it from the joint PMF 𝑝𝑈,𝑉(𝑢, 𝑣)?

We know ℙ 𝑈 = 1 ∩ 𝑉 = 𝑣  for all 𝑣…

ℙ 𝑈 = 1
=  ℙ 𝑈 = 1 ∩ 𝑉 = 1 + ℙ 𝑈 = 1 ∩ 𝑉 = 2  
     + ℙ 𝑈 = 1 ∩ 𝑉 = 3 +  ℙ 𝑈 = 1 ∩ 𝑉 = 4

=
1

16
+

2

16
+

2

16
+

2

16
=

7

16
 

Use LoTP because the events 𝑉 = 1, 𝑉 = 2,
𝑉 = 3, 𝑉 = 4 partition the sample space

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4

𝑼=1 1/16 2/16 2/16 2/16

𝑼=2 0 1/16 2/16 2/16

𝑼=3 0 0 1/16 2/16

𝑼=4 0 0 0 1/16



Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌 . Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Suppose I didn’t know how to compute 𝑝𝑈 𝑢 = ℙ(𝑈 = 𝑢) directly. 
Can we find it from the joint PMF 𝑝𝑈,𝑉(𝑢, 𝑣)?

In general…

ℙ 𝑈 = 𝑢
= ℙ 𝑈 = 𝑢 ∩ 𝑉 = 1 + ℙ 𝑈 = 𝑢 ∩ 𝑉 = 2  
    + ℙ 𝑈 = 𝑢 ∩ 𝑉 = 3 +  ℙ 𝑈 = 𝑢 ∩ 𝑉 = 4
= 

𝑣∈Ω𝑉
𝑝𝑈,𝑉(𝑢, 𝑣) 

Use LoTP because the events 𝑉 = 1, 𝑉 = 2,
𝑉 = 3, 𝑉 = 4 partition the sample space

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4

𝑼=1 1/16 2/16 2/16 2/16

𝑼=2 0 1/16 2/16 2/16

𝑼=3 0 0 1/16 2/16

𝑼=4 0 0 0 1/16



Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌 . Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Suppose I didn’t know how to compute 𝑝𝑈 𝑢 = ℙ(𝑈 = 𝑢) directly. 
Can we find it from the joint PMF 𝑝𝑈,𝑉(𝑢, 𝑣)?

In general…

ℙ 𝑈 = 𝑢 = 
𝑣∈Ω𝑉

𝑝𝑈,𝑉(𝑢, 𝑣) 

Use LoTP because the events 𝑉 = 1, 𝑉 = 2,
𝑉 = 3, 𝑉 = 4 partition the sample space

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4

𝑼=1 1/16 2/16 2/16 2/16

𝑼=2 0 1/16 2/16 2/16

𝑼=3 0 0 1/16 2/16

𝑼=4 0 0 0 1/16

𝑝𝑈(𝑢) is the “marginal” PMF for 𝑈 
(because we “marginalized” V)



Marginal Distribution

If you have the joint PMF for two random variables, you can find the 
PMF of one of them by using the law of total probability, partitioning 
on the values of the other random variable: 

𝑝𝑋 𝑎 = 
𝑏∈Ω𝑌

𝑝𝑋,𝑌(𝑎, 𝑏)

^ it’s the same PMF we’ve talked about before, the “marginal” is just there to 
indicate is was derived from a joint PMF



Example: Weird Dice

Roll 2 fair 4-sided dice independently 

Let 𝑈 be the min value 𝑈 = min 𝑋, 𝑌 . Let 𝑊 be the max value 𝑊 = max(𝑋, 𝑌)

Suppose I didn’t know how to compute 𝑝𝑈 𝑢 = ℙ(𝑈 = 𝑢) directly. 
Can we find it from the joint PMF 𝑝𝑈,𝑉(𝑢, 𝑣)?

𝑝𝑈 𝑢 =

7

16
 if 𝑢 = 1

5

16
 if 𝑢 = 2

3

16
 if 𝑢 = 3

1

16
 if 𝑢 = 4

0 otherwise

𝑝𝑈,𝑉 𝑽=1 𝑽=2 𝑽=3 𝑽=4

𝑼=1 1/16 2/16 2/16 2/16

𝑼=2 0 1/16 2/16 2/16

𝑼=3 0 0 1/16 2/16

𝑼=4 0 0 0 1/16



Joint Expectation

Same ideas as before! 

Examples of joint functions:

𝑔 𝑋, 𝑌 = 𝑋 + 𝑌, 𝑔 𝑋, 𝑌 = 𝑋𝑌, 𝑔 𝑋, 𝑌 = 𝑋𝑌, 𝑔 𝑋, 𝑌 =
𝑋
𝑌

, etc.  

For a function 𝒈(𝑿, 𝒀), the expectation can be written in terms of 

the joint PMF. 

𝔼 𝒈 𝑿, 𝒀 = 

(𝒂,𝒃)∈𝛀𝑿,𝐘

𝒈 𝒂, 𝒃 ⋅ 𝒑𝑿,𝒀(𝒂, 𝒃)

Joint Expectations 



Joint Distributions

For continuous joint distributions, everything will look very 

similar but we replace summations with integrals, and use a 

density function instead of the PMF



Joint Support/Range - Ω𝑋,𝑌

We have two continuous random variables 𝑋 and 𝑌 
(that may or may not be independent)

Ω𝑋,𝑌 = 𝑎, 𝑏 ∶ 𝑓𝑋,𝑌 𝑎, 𝑏 > 0 ⊆ Ω𝑋 × Ω𝑌  

Joint PDF - f𝑋,𝑌(𝑎, 𝑏)
𝑓𝑋,𝑌(𝑎, 𝑏) defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Joint CDF - F𝑋,𝑌(𝑎, 𝑏)
𝐹𝑋,𝑌(𝑎, 𝑏) = ℙ 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏  

defined for all 𝑎, 𝑏 ∈ ℝ × ℝ

Normalization Property:

∞−

∞
∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 = 1 

Marginal PDF - f𝑋(𝑥), f𝑌(𝑦)
𝑓𝑋 𝑥 = ∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑦 

𝑓𝑌 𝑦 = ∞−

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 

Joint Expectation

𝔼 𝑔 𝑋, 𝑌 =

∞−

∞
∞−

∞
𝑔 𝑥, 𝑦  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 

Notice we’re integrating 

(summing) over what the 

other RV can be

> 𝑓𝑋,𝑌 𝑎, 𝑏 = 𝑓𝑋 𝑎 ⋅ 𝑓𝑋(𝑏) for all 𝑎, 𝑏 ∈ Ω𝑋,𝑌

> Ω𝑋, = Ω𝑋 × Ω𝑌

Joint Independence



Example: Darts 

We throw a dart uniformly at random onto a circle of radius R centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

Let’s find and sketch the joint range Ω𝑋,𝑌



Example: Darts 

We throw a dart uniformly at random onto a circle of radius 𝑟 centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

Let’s find and sketch the joint range Ω𝑋,𝑌

𝑥

𝑦

Ω𝑋,𝑌 = { 𝑥, 𝑦 ∈ ℝ × ℝ; x2 + y2 ≤ 𝑟}



Example: Darts 

We throw a dart uniformly at random onto a circle of radius 𝑟 centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

Let’s find and sketch the joint PDF 𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋,𝑌 𝑥, 𝑦 =

 

𝑥𝑦

𝑓𝑋,𝑌(𝑥, 𝑦)



Example: Darts 

We throw a dart uniformly at random onto a circle of radius 𝑟 centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

Let’s find and sketch the joint PDF 𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋,𝑌 𝑥, 𝑦 = ቐ
1

𝜋𝑟2
 𝑥2 + 𝑦2 ≤ 1

0 otherwise

𝑥𝑦

𝑓𝑋,𝑌(𝑥, 𝑦)



Example: Darts 

We throw a dart uniformly at random onto a circle of radius 𝑟 centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

What is the marginal PDF for 𝑋 and 𝑌?

𝑓𝑋 𝑎 =

𝑓𝑌 𝑏 =

𝑥𝑦

𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋,𝑌 𝑥, 𝑦 = ቐ
1

𝜋𝑟2  𝑥2 + 𝑦2 ≤ 1

0 otherwise



Example: Darts 

We throw a dart uniformly at random onto a circle of radius 𝑟 centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

What is the marginal PDF for 𝑋 and 𝑌?

𝑓𝑋 𝑎 = න
−∞

∞

𝑓𝑋,𝑌 𝑎, 𝑦 𝑑𝑦

𝑓𝑌 𝑏 = න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑏 𝑑𝑥

𝑥𝑦

𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋,𝑌 𝑥, 𝑦 = ቐ
1

𝜋𝑟2  𝑥2 + 𝑦2 ≤ 1

0 otherwise



Example: Darts 

We throw a dart uniformly at random onto a circle of radius 𝑟 centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

What is the marginal PDF for 𝑋 and 𝑌?

𝑓𝑋 𝑎 = න
−∞

∞

𝑓𝑋,𝑌 𝑎, 𝑦 𝑑𝑦

𝑓𝑌 𝑏 = න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑏 𝑑𝑥

𝑓𝑋,𝑌 𝑥, 𝑦 = ቐ
1

𝜋𝑟2  𝑥2 + 𝑦2 ≤ 1

0 otherwise

𝑥

𝑦



Example: Darts 

We throw a dart uniformly at random onto a circle of radius 𝑟 centered 
around the version. 𝑋 and 𝑌 are the x and y coordinates of the point the 
dart lands at. 

What is the marginal PDF for 𝑋 and 𝑌?

𝑓𝑋 𝑎 = න
−∞

∞

𝑓𝑋,𝑌 𝑎, 𝑦 𝑑𝑦 = න
− 𝑟−𝑎2

𝑟−𝑎2
1

𝜋𝑟2
𝑑𝑦 =

2 𝑟 − 𝑎2

𝜋𝑟2

𝑓𝑌 𝑏 = න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑏 𝑑𝑥 = න
− 𝑟−𝑏2

𝑟−𝑏2
1

𝜋𝑟2
𝑑𝑥 =

2 𝑟 − 𝑏2

𝜋𝑟2

𝑓𝑋,𝑌 𝑥, 𝑦 = ቐ
1

𝜋𝑟2  𝑥2 + 𝑦2 ≤ 𝑟

0 otherwise

𝑥

𝑦



Joint Continuous Probabilities

Just like we’ve done with PDFs for single random variables…

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 ∩ 𝑐 ≤ 𝑌 ≤ 𝑑 = 𝑎

𝑏
𝑐

𝑑
𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦 𝑑𝑥



Example: Continuous Servers 

The time until server 1 crashes is 𝑋~Exp(𝑢), and the time until server 2 
crashes is 𝑌~Exp(𝑣). Both servers are independent of each other. 

What is the probability server 1 crashes before server 2? 

ℙ 𝑋 < 𝑌 =

𝑥

𝑦



Example: Continuous Servers 

The time until server 1 crashes is 𝑋~Exp(𝑢), and the time until server 2 
crashes is 𝑌~Exp(𝑣). Both servers are independent of each other. 

What is the probability server 1 crashes before server 2? 

ℙ 𝑋 < 𝑌
= 0

∞
𝑥

∞
𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑦 𝑑𝑥 

= 0

∞
𝑥

∞
𝑓𝑋 𝑥 𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑥 by independence

𝑥

𝑦



Analogues for continuous
Everything we saw today has a continuous version.

There are “no surprises”– replace pmf with pdf and sums with integrals. 



Covariance

We sometimes want to measure how “intertwined” 𝑋 and 𝑌 are – how 
much knowing about one of them will affect the other.

If 𝑋 turns out “big” how likely is it that 𝑌 will be “big” how much do they 
“vary together”

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀]

Covariance



Covariance

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌)

That’s consistent with our previous knowledge for independent 
variables. (for 𝑋, 𝑌 independent, 𝔼 𝑋𝑌 = 𝔼 𝑋 𝔼[𝑌]). 

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?
Before you calculate, make a 

prediction. What should it be?



Covariance

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?

Var 𝑋 = Var 𝑌 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 1 − 02 = 1

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼[𝑋]𝔼[𝑌]

𝔼 𝑋𝑌 =
1

2
⋅ −1 ⋅ 1 +

1

2
1 ⋅ −1 = −1

Cov 𝑋, 𝑌 = −1 − 0 ⋅ 0 = −1.

Var 𝑋 + 𝑌 = 1 + 1 + 2 ⋅ −1 = 0
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