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Lecture 15

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Logistics

• Reminder about concept checks 12, 13, and 14, late due date tonight

• Midterm grades released on ~Wednesday

• Updated lecture notes for last Wed and Fri lecture on website



Normal Distributions

A normal random variable 𝑋~𝒩(𝜇, 𝜎2) has two parameters: 

• 𝜇 = 𝔼 𝑋  is the mean

• 𝜎2 = Var(𝑋) is the variance (𝜎 = 𝑉𝑎𝑟 𝑋  is standard deviation)

and follows this probability density function (a bell curve!): 
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Normal Distributions

The CDF has no closed form, so instead, we have a table containing 
values of the CDF for a standard normal random variable 𝒩(0,1). 

To find the probability of a normal RV X~𝒩(𝜇, 𝜎2) being in some range…

1. Standardize the normal random variable: 𝑍 =
𝑋−𝜇

𝜎
 

   note: when we standardize, the numbers left are called z-scores (the number of 
   standard deviations away from the mean (e.g., ℙ(𝑍 ≥ 2) means we’re finding 
   probability of being more than 2 standard deviations away from the mean)

2. Write probability expression in terms of 𝚽 𝐳 = ℙ(Z ≤ 𝑧)

3. Look up the value(s) in the table



Normal distributions show up everywhere!



But…why?

This is because of what we call, the central limit theorem! 

“The sum of any independent random variables approaches a normal 
distribution. It becomes closer to normal as we sum more RVs 
together.”



More formally, the Central Limit Theorem!

This is because of what we call, the central limit theorem! 

“The sum of any independent random variables approaches a normal 
distribution. It becomes closer to normal as we sum more RVs 
together.”

If 𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d. random variables, each with mean 𝝁 and variance 𝝈𝟐 

Let 𝑌𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

As 𝒏 → ∞, 𝒀𝒏 approaches a normal distribution 𝒩(𝒏 ⋅ 𝝁, 𝒏 ⋅ 𝝈𝟐)
(i.e., CDF of 𝒀𝒏 converges to the CDF of 𝒩(𝒏 ⋅ 𝝁, 𝒏 ⋅ 𝝈𝟐))

Central Limit Theorem



What does i.i.d mean? 

Independent and Identically Distributed (i.i.d)

For random variables 𝑋1, 𝑋2, … , 𝑋𝑛 to be i.i.d., they must

• Be mutually independent
 “knowing value of one random variable doesn’t give us info about the value of others”

• All have the same PMF (if discrete) or PDF (if continuous)
 “they follow the same probability distribution”



CLT with RVs that are NOT i.i.d 

(R.A. Fisher (1918))

Height may be expressed as the sum of many 
independent, random factors
How much milk you drank per day as a child

Which variant of GH1 (a growth hormone) you have

How much protein/calcium/vitamins/minerals you 
had as a child

How many hours of sleep you averaged

How many hours of physical activity you averaged

𝐻 = 𝐻1 + 𝐻2+, , , +𝐻𝑛 -> 𝐻~𝑁(… )

A version of CLT does work here! But it’s outside the scope of this class. 



CLT with RVs that are i.i.d 

“number of firing neurons” – sum of indicator random variables for 
whether each neuron fired
Assume: each neuron is independent, and has the same probability

“number of people who voted for someone” – sum of indicator random 
variables for (assume people are independent)
Assume: each person makes independent, and has the same probability

“total amount invested in a year” – sum of random variables four 
amount invested each day (assume each investment is independent)
Assume: each day’s investment is independent and follows the same distribution

We will use CLT in this class on problems like this.



A Sum of i.i.d Random Variables

If we have 𝑋1, 𝑋2, … , 𝑋𝑛 as i.i.d RVs each with mean 𝜇 and variance 𝜎2

𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 is the sum of those RVs. Then…

> Expectation. by linearity of expectation…

 𝔼 𝑆𝑛 = 𝔼 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 = 𝔼 𝑋1 + 𝔼 𝑋2 + ⋯ + 𝔼 𝑋𝑛 = 𝑛𝜇

> Variance. by linearity of variance because of independence

   𝑉𝑎𝑟 𝑆𝑛 = 𝑉𝑎𝑟 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 = 𝑉𝑎𝑟 𝑋1 + 𝑉𝑎𝑟 𝑋2 + ⋯ + 𝑉𝑎𝑟 𝑛𝜎2



Proof of the CLT?

We’re not going to cover the proof here. 

How is the proof done?

Step 1: Prove that for all positive integers 𝑘, 𝑌𝑛
𝑘 → 𝔼[𝑍𝑘]

Step 2: Prove that if 𝔼 𝑌𝑛
𝑘 = 𝔼 𝑍𝑘  for all 𝑘 then 𝐹𝑌𝑛

𝑧 = 𝐹𝑍(𝑧)



“Proof by example”

𝑛 is the number of i.i.d RVs summed

The dotted lines show an “empirical 

PMF” – a PMF estimated by running 

the experiment a large number of 

times.

 

The blue line is the normal RV that 

the CLT predicts. 

Shown are 𝑛 = 1,2,3,10

𝑛 = 1 𝑛 = 2

𝑛 = 3 𝑛 = 10

CLT says a sum of 𝒏 i.i.d RVs approaches a 

normal distribution as 𝒏 gets larger



“Proof by example” -- uniform

https://www.desmos.com/calculator/2n2m05a9km



“Proof by example” -- uniform
𝑿 = 𝑿𝟏

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒 + 𝑿𝟓

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒 + 𝑿𝟓 + 𝑿𝟔

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒 + 𝑿𝟓 + 𝑿𝟔 + 𝑿𝟕

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒 + 𝑿𝟓 + 𝑿𝟔 + 𝑿𝟕 + 𝑿𝟖

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒 + 𝑿𝟓 + 𝑿𝟔 + 𝑿𝟕 + 𝑿𝟖 + 𝑿𝟗

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by example” -- uniform
𝑿 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒 + 𝑿𝟓 + 𝑿𝟔 + 𝑿𝟕 + 𝑿𝟖 + 𝑿𝟗 + 𝑿𝟏𝟎

where each 𝑋𝑖~Unif(0,1) and is independent



“Proof by real-world”

A lot of real-world bell-curves 
can be explained as:

1. The random variable comes 
from a combination of 
independent factors.

2. The CLT says the 
distribution will become like a 
bell curve. 

birthweight

https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/statistical-distributions


Theory vs. Practice

> The formal theorem statement is “in the limit”

   You might not get exactly a normal distribution for any finite 𝑛 (e.g. if 
   you sum discrete, the sum is always discrete and will be discontinuous 
   for every finite 𝑛. 

> In practice, the approximations get very accurate very quickly (at least 
    with a few tricks we’ll see soon). 

   They won’t be exact (unless the 𝑋𝑖 are normals) but it’s close enough 
   to use even with relatively small 𝑛.



Using the Central Limit Theorem

Let’s start with the case when we are using CLT to approximate 

a sum of continuous i.i.d random variables as normal



Outline of CLT steps

1. Setup the problem (e.g., 𝑋 = σ𝑖=1
𝑛 𝑋𝑖 , 𝑋𝑖 are i.i.d., and we want ℙ(𝑋 ≤ 𝑘))

  Write event you are interested in, in terms of sum of random variables.

    Apply continuity correction here if RVs are discrete.

2. Apply CLT (e.g., approx 𝑋 as 𝑌~𝑁(𝑛𝜇, 𝑛𝜎2) -> ℙ 𝑋 ≤ 𝑘 ≈ ℙ 𝑌 ≤ 𝑘
    Approximate sum of RVs as normal with appropriate mean and variance

from here, we’re working with a normal distribution, which we’ve worked with before!

3. Compute probability approximation using Phi table

    > Standardize  (𝑍 =
𝑁−𝜇

𝜎
) -> ℙ 𝑌 ≤ 𝑘 = ℙ

𝑌−𝜇

𝜎
≤

𝑘−𝜇

𝜎
= ℙ 𝑍 ≤

𝑘−𝜇

𝜎

    > Write in terms of 𝛷 𝑧 =  ℙ(Z ≤ 𝑧)

    > Look up in table

we’re going to be adding one more step here when we talk about discrete RVs!



Lightbulbs

You buy lightbulbs that each burn out according to an exponential 
distribution with parameter of 𝜆 = 1.8 lightbulbs per year.

You buy a 10 pack of (independent) light bulbs. What is the probability 
that your 10-pack lasts at least 5 years?

Let 𝑋𝑖 be the time it takes for lightbulb 𝑖 to burn out.

Let 𝑋 be the total time. Estimate ℙ(𝑋 ≥ 5). 



Lightbulbs

You buy lightbulbs that each burn out according to distribution Exp(1.8) lightbulbs per 
year. Estimate the probability your 10-pack (independent) lasts at least 5 years? 

1. Setup the Problem: 

 

 2. Apply CLT. 

3. Compute Probability. 





Lightbulbs

You buy lightbulbs that each burn out according to distribution Exp(1.8) lightbulbs per year. 
Estimate the probability your 10-pack (independent) lasts at least 5 years? 

1. Setup the Problem: Let 𝑋𝑖 be the time it takes for lightbulb 𝑖 to burn out. 
𝑋𝑖~Exp(1.8) and 𝜇 = 𝔼 𝑋𝑖 =

1

1.8
 and 𝜎2 = 𝑉𝑎𝑟 𝑋𝑖 =

1

1.82. Let X be the total 

time and 𝑋 = σ𝑖=1
10 𝑋𝑖 . We are interested in ℙ(𝑋 ≥ 5).

2. Apply CLT. Because the 𝑋𝑖 ’s are i.d.d, we can apply CLT and 𝑋 can be 
approximated by 𝑌 ∼ 𝒩(10 ⋅

1

1.8
, 10 ⋅

1

1.82). ℙ 𝑋 ≥ 5 ≈ ℙ 𝑌 ≥ 5

3. Compute Probability. 

ℙ 𝑌 ≥ 5 = ℙ 𝑍 ≥
5−10/1.8

10/1.8
  standardize

               ≈ ℙ 𝑍 ≥ −0.32 = ℙ 𝑍 ≤ 0.32 (symmetry)

               = Φ(0.32) ≈ .62552  plug into z-table

True value (uses a distribution not in our zoo) is ≈ 0.58741



Using the Central Limit Theorem

Now, let’s try the case when we are using CLT to approximate a 

sum of discrete i.i.d random variables as normal



Factory Widgets 

Suppose you are managing a factory, that produces widgets. Each widget 
produced is defective (independently) with probability 5%. 

Your factory will produce 1000 (possibly defective) widgets. What is the 
probability of producing at most 940 non-defective widgets?



Factory Widgets - Exact Answer

Suppose you are managing a factory, that produces widgets. Each widget 
produced is defective (independently) with probability 5%. 

Your factory will produce 1000 (possibly defective) widgets. What is the 
probability of producing at most 940 non-defective widgets?

𝑋 is the number of non-defective widgets. Let 𝑋~Bin(1000, . 95)

Our goal: ℙ(𝑋 ≤ 940)?

That’s a big summation: σ𝑘=0
940 1000

𝑘
(. 95)𝑘 ⋅ (. 05)1000−𝑘 ≈ . 08673



Factory Widgets - Exact Answer

Suppose you are managing a factory, that produces widgets. Each widget 
produced is defective (independently) with probability 5%. 

Your factory will produce 1000 (possibly defective) widgets. What is the 
probability of producing at most 940 non-defective widgets?

𝑋 is the number of non-defective widgets. Let 𝑋~Bin(1000, . 95)

Our goal: ℙ(𝑋 ≤ 940)?

That’s a big summation: σ𝑘=0
940 1000

𝑘
(. 95)𝑘 ⋅ (. 05)1000−𝑘 ≈ . 08673

What does the CLT give? Binomial is sum of i.i.d bernoullis -> can use CLT!



Factory Widgets - CLT
Suppose you are managing a factory, that produces widgets. Each widget produced is defective 
(independently) with probability 5%. 

Your factory will produce 1000 (possibly defective) widgets. What is the probability of producing at most 
940 non-defective widgets?

1. Setup the Problem: 
 

2. Apply CLT. 

3. Compute Probability. 



Factory Widgets - CLT

Suppose you are managing a factory, that produces widgets. Each widget produced is defective 
(independently) with probability 5%. 

Your factory will produce 1000 (possibly defective) widgets. What is the probability of producing at most 
940 non-defective widgets?

1. Setup the Problem: 𝑋 is the number of non-defective widgets. 
𝑋 = σ𝑖=1

1000 𝑋𝑖 where 𝑋𝑖 is 1 if the i’th widget is non-defective. Goal: ℙ(𝑋 ≤ 940)

2. Apply CLT. 𝑋 is sum of i.i.d RVs each with 𝜇 = 𝔼 𝑋𝑖 = 𝑝 = .95 and Var 𝑋𝑖 =
𝑝 1 − 𝑝 = .0475, we can approximate 𝑋 with 𝑌~𝒩(1000 ⋅ 0.95, 1000 ⋅ 0.0475). 
So, ℙ 𝑋 ≤ 940 ≈ ℙ(𝑌 ≤ 940)

3. Compute Probability. 

ℙ 𝑌 ≤ 940 = ℙ 𝑍 ≤
940−1000⋅0.95

1000⋅0.0475
          standardize

                    ≈ Φ −1.45 = 1 − Φ(1.45)  write in terms of 𝚽

                    ≈ 1 − .92647 = .07353.        plug into z-table



Factory Widgets - CLT

Suppose you are managing a factory, that produces widgets. Each widget produced is defective 
(independently) with probability 5%. 

Your factory will produce 1000 (possibly defective) widgets. What is the probability of producing at most 
940 non-defective widgets?

1. Setup the Problem: 𝑋 is the number of non-defective widgets. 
𝑋 = σ𝑖=1

1000 𝑋𝑖 where 𝑋𝑖 is 1 if the i’th widget is non-defective. Goal: ℙ(𝑋 ≤ 940)

2. Apply CLT. 𝑋 is sum of i.i.d RVs each with 𝜇 = 𝔼 𝑋𝑖 = 𝑝 = .95 and Var 𝑋𝑖 =
𝑝 1 − 𝑝 = .0475, we can approximate 𝑋 with 𝑌~𝒩(1000 ⋅ 0.95, 1000 ⋅ 0.0475). 
So, ℙ 𝑋 ≤ 940 ≈ ℙ(𝑌 ≤ 940)

3. Compute Probability. 

ℙ 𝑌 ≤ 940 = ℙ 𝑍 ≤
940−1000⋅0.95

1000⋅0.0475
          standardize

                    ≈ Φ −1.45 = 1 − Φ(1.45)  write in terms of 𝚽

                    ≈ 1 − .92647 = .07353.        plug into z-table

The exact probability 

is .08673. We’re off 

by ~1.3%!



There’s are some problems 

When approximating a discrete distribution like binomial with a 
continuous normal distribution, there are some problems that arise! 

> ℙ 𝑋 = 2 > 1 (we can use the binomial PMF). 
   But, when we approximate to the normal, continuous, 𝑌, ℙ 𝑌 = 2 = 0 

> 𝑋 only takes on integers, so ℙ 𝑋 ≤ 1 + ℙ 𝑋 ≥ 2 = 1. 
   But, when we approximate to the normal, continuous, 𝑌, 
   ℙ 𝑌 ≤ 1 + ℙ 𝑌 ≥ 2 < 1 



Continuity Correction

The binomial distribution is discrete, but the normal is continuous.

Let’s correct for that (called a “continuity correction”)

 Assign each value in the discrete range to a continuous interval

Here the support of 𝑋 is {… , −2, −1, 0, 1, 2, … }



Continuity Correction

The binomial distribution is discrete, but the normal is continuous.

Let’s correct for that (called a “continuity correction”)

 Assign each value in the discrete range to a continuous interval

Here the support of 𝑋 is {… , −2, −1, 0, 1, 2, … }

e.g., 

ℙ 𝑋 = 2  ->

ℙ 𝑋 ≥ 2  -> 

ℙ 𝑋 > 1  -> 

ℙ 𝑋 ≤ 1  -> 



Continuity Correction

The binomial distribution is discrete, but the normal is continuous.

Let’s correct for that (called a “continuity correction”)

 Assign each value in the discrete range to a continuous interval

Here the support of 𝑋 is {… , −2, −1, 0, 1, 2, … }

e.g., 

ℙ 𝑋 = 2  -> ℙ 1.5 ≤ 𝑋 ≤ 2.5

ℙ 𝑋 ≥ 2  -> ℙ 𝑋 ≥ 1.5

ℙ 𝑋 > 1  -> ℙ 𝑋 ≥ 1.5

ℙ 𝑋 ≤ 1  -> ℙ 𝑋 ≤ 1.5



Continuity Correction

The binomial distribution is discrete, but the normal is continuous.

Let’s correct for that (called a “continuity correction”)

 Assign each value in the discrete range to a continuous interval

Here the support of 𝑋 is {… , −2, 5, 12, 19 … }

e.g., 

ℙ 𝑋 = −2  ->

ℙ 𝑋 ≥ 5  -> 

ℙ 𝑋 < 12  -> 

ℙ 𝑋 ≥ 0  -> Fill out the poll everywhere: 

pollev.com/cse312



Continuity Correction

The binomial distribution is discrete, but the normal is continuous.

Let’s correct for that (called a “continuity correction”)

 Assign each value in the discrete range to a continuous interval

Here the support of 𝑋 is {… , −2, 5, 12, 19 … }

e.g., 

ℙ 𝑋 = −2  ->

ℙ 𝑋 ≥ 5  -> 

ℙ 𝑋 < 12  -> 

ℙ 𝑋 ≥ 0  ->



Continuity Correction

The binomial distribution is discrete, but the normal is continuous.

Let’s correct for that (called a “continuity correction”)

 Assign each value in the discrete range to a continuous interval

Here the support of 𝑋 is {… , −2, 5, 12, 19 … }

e.g., 

ℙ 𝑋 = −2  -> ℙ −5.5 ≤ 𝑋 ≤ 1.5

ℙ 𝑋 ≥ 5  -> ℙ 𝑋 ≥ 1.5

ℙ 𝑋 < 12  -> ℙ 𝑋 ≤ 8.5

ℙ 𝑋 ≥ 0  -> ℙ 𝑋 ≥ 1.5



Outline of CLT steps

1. Setup the problem (e.g., 𝑋 = σ𝑖=1
𝑛 𝑋𝑖 , 𝑋𝑖 are i.i.d., and we want ℙ(𝑋 ≤ 𝑘))

  Write event you are interested in, in terms of sum of random variables.

    Apply continuity correction here if RVs are discrete.

2. Apply CLT (e.g., approx 𝑋 as 𝑌~𝑁(𝑛𝜇, 𝑛𝜎2) -> ℙ 𝑋 ≤ 𝑘 ≈ ℙ 𝑌 ≤ 𝑘
    Approximate sum of RVs as normal with appropriate mean and variance

from here, we’re working with a normal distribution, which we’ve worked with before!

3. Compute probability approximation using Phi table

    > Standardize  (𝑍 =
𝑁−𝜇

𝜎
) -> ℙ 𝑌 ≤ 𝑘 = ℙ

𝑌−𝜇

𝜎
≤

𝑘−𝜇

𝜎
= ℙ 𝑍 ≤

𝑘−𝜇

𝜎

    > Write in terms of 𝛷 𝑧 =  ℙ(Z ≤ 𝑧)

    > Look up in table



Factory Widgets - CLT with continuity correction

Suppose you are managing a factory, that produces widgets. Each widget produced is defective 
(independently) with probability 5%. Your factory will produce 1000 (possibly defective) widgets. What 
is the probability of producing at most 940 non-defective widgets?

1. Setup the Problem: 𝑋 is the number of non-defective widgets. 
𝑋 = σ𝑖=1

1000 𝑋𝑖 where 𝑋𝑖 is 1 if the i’th widget is non-defective. We want to find ℙ(𝑋 ≤ 940).

Because 𝑿 is discrete, we use continuity correction: ℙ 𝑿 ≤ 𝟗𝟒𝟎 = ℙ(𝑿 ≤ 𝟗𝟒𝟎. 𝟓)

2. Apply CLT. 𝑋 is sum of i.i.d RVs each with 𝜇 = 𝔼 𝑋𝑖 = 𝑝 = .95 and Var 𝑋𝑖 = 𝑝 1 − 𝑝 =
.0475, we can approximate 𝑋 with 𝑌~𝒩(1000 ⋅ 0.95, 1000 ⋅ 0.0475). 
So, ℙ 𝑋 ≤ 940.5 ≈ ℙ(𝑌 ≤ 940.5)

3. Compute Probability. 

ℙ 𝑌 ≤ 940.5 = ℙ 𝑍 ≤
940.5−1000⋅0.95

1000⋅0.0475
          standardize

                    ≈ Φ −1.38 = 1 − Φ(1.38)       write in terms of 𝚽

                    ≈ 1 − .91621 = .08379.             plug into z-table

The exact probability 

is .08673. Still an 

approximation, but  

very close now! :D



Sometimes, we are solving for something that 
is not the probability

For example, we might be looking for the value of the expectation, 
variance, or some other parameter that makes the probability be a 
certain value. 

In this case, we will still follow the exact same approach! But will end up 
doing a reverse z-table lookup at the end. 



Lying about the time…….

Dr. Evelyn, is studying the amount of time her students spend on a 
specific assignment. The time the i’th student spends on the assignment 
is a random variable 𝑋𝑖 with a mean of 𝜇=4 hours and a standard 
deviation of 𝜎 = 1.5 hours. Dr. Evelyn wants to find out how many 
students 𝑛 she needs to survey so that the probability that the average 
time spent on the assignment by the students is within 30 minutes (0.5 
hours) of the mean is at least 95%.



Lying about the time…….

Dr. Evelyn, is studying the amount of time her students spend on a specific assignment. The 
time the i’th student spends on the assignment is a random variable 𝑋𝑖 with a mean of 𝜇=4 
hours and a standard deviation of 𝜎 = 1.5 hours. Dr. Evelyn wants to find out how many 
students 𝒏 she needs to survey so that the probability that the average time spent on the 
assignment by the students is within 30 minutes (0.5 hours) of the mean is at least 95%.

Still follow the same approach: 
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