etherpad.wikimedia.org/p/312 for (anonymous) questions/comments!

Zoo of Continuous Random Variables CSE 312 24Su Lecture 14

Outline for Today

- Review concepts for continuous random variables
- Zoo of continuous random variables
	- *Continuous* uniform distribution
	- Exponential distribution
	- Normal distribution

Discrete Random Variables

The support has *finite* or *countably infinite values e.g., number of successes, number of trials till success, attendance at a class are all discrete because they take on a set of finite or countably infinite values*

Some random experiments have uncountably-infinite sample spaces *> How long until the next bus shows up? > Throwing a dart on a board (what location does the dart land?)*

Continuous Random Variables

Random variables with a support of *uncountably-infinite values > e.g., RVs that take on any real number in some interval(s) like distance, height, time, etc.*

Discrete RVs *Continuous* RVs

Support is finite/countably infinite (e.g. *integers*)

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

Support is finite/countably infinite (e.g. *integers*)

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

 $\mathbb{P}(X = k) = \frac{1}{n^2}$ $\frac{1}{\infty}$ = 0 so we don't use PMF. instead...

Support is finite/countably infinite (e.g. *integers*)

Probability mass function $p_X(k)$ gives probability of each value in support

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

 $\mathbb{P}(X = k) = \frac{1}{n^2}$ $\frac{1}{\infty}$ = 0 so we don't use PMF. instead... Probability density function $f_X(k)$ describes relative chances of taking values around k

Support is finite/countably infinite (e.g. *integers*)

Probability mass function $p_X(k)$ gives probability of each value in support

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

 $\mathbb{P}(X = k) = \frac{1}{n^2}$ $\frac{1}{\infty}$ = 0 so we don't use PMF. instead... Probability density function $f_X(k)$ describes relative chances of taking values around k

Cumulative Distribution Function (CDF) is the function $F_X(k) = \mathbb{P}(X \leq k)$

Support is finite/countably infinite (e.g. *integers*)

Probability mass function $p_x(k)$ gives probability of each value in support

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

 $\mathbb{P}(X = k) = \frac{1}{n^2}$ $\frac{1}{\infty}$ = 0 so we don't use PMF. instead... Probability density function $f_X(k)$ describes relative chances of taking values around k

Cumulative Distribution Function (CDF) is the function $F_X(k) = \mathbb{P}(X \leq k)$

Sum up the probabilities of values $\leq k$ \qquad \q

Support is finite/countably infinite (e.g. *integers*)

Probability mass function $p_x(k)$ gives probability of each value in support

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

 $\mathbb{P}(X = k) = \frac{1}{n^2}$ $\frac{1}{\infty}$ = 0 so we don't use PMF. instead... Probability density function $f_X(k)$ describes relative chances of taking values around k

Cumulative Distribution Function (CDF) is the function $F_X(k) = \mathbb{P}(X \leq k)$

Expectation: $\mathbb{E}[X] = \sum_{k \in \Omega_X} (k \cdot p_X(k))$ $\mathbb{E}[g(X)] = \sum_{k \in \Omega_X}(g(k) \cdot p_X(k))$

Sum up the probabilities of values $\leq k$ \qquad \q

Expectation: $\mathbb{E}[X] = \int_{-\infty}^{\infty} z \cdot f_X(z) dz$ $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(z) \cdot f_X(z) dz$

Support is finite/countably infinite (e.g. *integers*)

Probability mass function $p_x(k)$ gives probability of each value in support

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

 $\mathbb{P}(X = k) = \frac{1}{n^2}$ $\frac{1}{\infty}$ = 0 so we don't use PMF. instead... Probability density function $f_X(k)$ describes relative chances of taking values around k

Expectation: $\mathbb{E}[X] = \sum_{k \in \Omega_X} (k \cdot p_X(k))$ $\mathbb{E}[g(X)] = \sum_{k \in \Omega_X}(g(k) \cdot p_X(k))$ Expectation: $\mathbb{E}[X] = \int_{-\infty}^{\infty} z \cdot f_X(z) dz$ $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(z) \cdot f_X(z) dz$ *Sum* up the probabilities of values $\leq k$ \qquad \q Cumulative Distribution Function (CDF) is the function $F_X(k) = \mathbb{P}(X \leq k)$

Variance is $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

Support is finite/countably infinite (e.g. *integers*)

Probability mass function $p_x(k)$ gives probability of each value in support

 $\mathbb{E}[g(X)] = \sum_{k \in \Omega_X}(g(k) \cdot p_X(k))$

Continuous RVs

Support is uncountably infinite (e.g., *real numbers*)

 $\mathbb{P}(X = k) = \frac{1}{n^2}$ $\frac{1}{\infty}$ = 0 so we don't use PMF. instead... Probability density function $f_X(k)$ describes relative chances of taking values around k

Expectation: $\mathbb{E}[X] = \sum_{k \in \Omega_X} (k \cdot p_X(k))$ Expectation: $\mathbb{E}[X] = \int_{-\infty}^{\infty} z \cdot f_X(z) dz$ *Sum* up the probabilities of values $\leq k$ \qquad \q Cumulative Distribution Function (CDF) is the function $F_X(k) = \mathbb{P}(X \leq k)$

$$
\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(z) \cdot f_X(z) dz
$$

Variance is $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

Linearity of expectation and properties of expectation and variance applies in both!

Continuous Zoo

This zoo defines common patterns for continuous random variables and gives us the PDF, CDF, expectation, and variance, so we don't have to compute it every time!

It's a smaller zoo, but it's just as much fun! :D

Continuous Uniform Distribution

Scenario: Pick a random *real* number between a and b. X is our choice. > X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

We saw the discrete uniform distribution before – it took on an integer between and This is the continuous uniform distribution – it takes on a real number between a and b

Continuous Uniform Distribution - **PDF**

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

What is the PDF, $f_X(k)$? Draw a picture and think about the properties the PDF must have!

Continuous Uniform Distribution - **PDF**

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

What is the PDF, $f_X(k)$? Draw a picture and think about the properties the PDF must have!

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

What is the CDF, $F_X(k)$? Let's compute this "visually"....

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

What is the CDF, $F_X(k)$? Let's compute this "visually".... $F_X(k) = P(X \le k)$ is the area of the green region below: $\frac{k-a}{b-a}$ if $a \leq k < b$

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

What is the CDF, $F_X(k)$? Let's compute this "visually".... $F_X(k) = P(X \le k)$ is the area of the green region below: $\frac{k-a}{b-a}$ if $a \leq k < b$

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

What is the CDF, $F_X(k)$? Let's compute this "visually".... $F_X(k) = P(X \le k)$ is the area of the green region below: $\frac{k-a}{b-a}$ if $a \leq k < b$

Continuous Uniform Distribution – **CDF(Integral)**

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$

What is the CDF, $F_X(k)$? Let's compute this "algebraically"....

The CDF is: $F_X(k) = \int_{-\infty}^{k}$ $f_X(z)dz$ *We can compute this for the ranges based on what k is and what* $f_X(z)$ *is for the values of z less than k* Case when $k \le a$: $F_X(k) = \int_{-\infty}^k$ $f_X(z)dz=\int_{-\infty}^{\infty}$ \boldsymbol{k} 0 $dz = 0$ Case when $\boldsymbol{a} \leq \boldsymbol{k} \leq \boldsymbol{b}$: $F_X(k) = \int_{-\infty}^k f_X(z) dz = \int_{-\infty}^a$ 0 $dz +$ a \boldsymbol{k} 1 $b-a$ $dz =$ $k-a$ $b-a$ Case when $\mathbf{k} > \mathbf{b}$: $F_X(k) = \int_{-\infty}^k f_X(z) dz = \int$ a \boldsymbol{b} 1 $\frac{1}{b-a}dz + \int_{b}^{b}$ \boldsymbol{k} 0 dz = 1 $F_X(k) =$ 0 if $k < a$ $k-a$ $b-a$ if $a \leq k \leq b$ 1 if $k \ge b$

Continuous Uniform Distribution – **Expectation**

 $> X$ is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$ *Using the formula for expectation….* $\mathbb{E}[X] = \int_{-\infty}^{\infty}$ ∞ $z \cdot f_X(z)$ dz $=\int_{-\infty}^{u}$ \boldsymbol{a} $z \cdot 0 \, dz + \int_a^b$ \boldsymbol{b} $Z \cdot$ 1 $\frac{1}{b-a}dz + \int_b$ ∞ $z\cdot 0\,\mathrm{d}z$ $= 0 + \int_{a}^{b}$ $b z$ $b-a$ $dz + 0$ $=\frac{2}{3(h-a)}$ z^2 $2(b-a)$ \boldsymbol{b} $z=a$ = b^2 $2(b-a)$ − a^2 $2(b-a$ = $b^2 - a^2$ $2(b-a$ = $(b + a)(b - a)$ $2(b-a$ $=$ $a+b$ 2 $f_X(z)$ $1/(b - a)$ a b

Continuous Uniform Distribution – **Variance**

 $> X$ is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$ $Var(X) = E[X^2] - (E[X])^2$ Computing $E[X^2]$ $f_X(z)$ $1/(b - a)$ a b

$$
\mathbb{E}[X^2] = \int_{-\infty}^{\infty} z^2 f_X(z) dz = \int_{-\infty}^a z^2 \cdot 0 dz + \int_a^b z^2 \cdot \frac{1}{b-a} dz + \int_b^{\infty} z^2 \cdot 0 dz
$$

$$
= 0 + \int_{a}^{b} z^{2} \cdot \frac{1}{b-a} dz + 0
$$

= $\frac{1}{b-a} \cdot \frac{z^{3}}{3} \Big|_{z=a}^{b} = \frac{1}{b-a} \Big(\frac{b^{3}}{3} - \frac{a^{3}}{3} \Big) = \frac{1}{3(b-a)} \cdot (b-a) (a^{2} + ab + b^{2})$
= $\frac{a^{2} + ab + b^{2}}{3}$

Continuous Uniform Distribution – **Variance**

> X is a uniform random real number between a and $b \rightarrow X \sim \text{Unif}(a, b)$ $Var(X) = E[X^2] - (E[X])^2$ $f_X(z)$

$$
\mathbb{E}[X^2] = \frac{a^2 + ab + b^2}{3}
$$

Plug into the formula:

$$
Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
$$

$$
= \frac{a^2 + ab + b^2}{3} - (\frac{a+b}{2})^2 = \frac{(b-a)^2}{12}
$$

Continuous Uniform Distribution

 $X \sim \text{Unif}(a, b)$ (uniform real number between a and b)

PDF:
$$
f_X(k) = \begin{cases} \frac{1}{b-a} & \text{if } a \le k \le b \\ 0 & \text{otherwise} \end{cases}
$$

\nCDF: $F_X(k) = \begin{cases} 0 & \text{if } k < a \\ \frac{k-a}{b-a} & \text{if } a \le k \le b \\ 1 & \text{if } k \ge b \end{cases}$
\nExpectation: $\mathbb{E}[X] = \frac{a+b}{2}$
\nVariance: $\text{Var}(X) = \frac{(b-a)^2}{12}$

How much time till an event occurs? e.g., seconds till thunder, time till the first customer

This sounds very similar to a geometric distribution!

- > Geometric random variable is the number of trials till success (discrete).
- > Exponential random variable is *time* (a real number, continuous) till success

*With the geometric distribution, we said trials must be independent -> "*If the flip 1 is tails, the coin doesn't remember it was tails, you've made no progress"

Here, *waiting must not make the event happen any sooner -> "*If we don't get success in the first 3.87sec, chances of seeing success doesn't change"

This means **memorylessness**! $\mathbb{P}(X \ge k + 1 | X \ge 1) = \mathbb{P}(Y \ge k)$

 $X \sim \text{Exp}(\lambda)$ is time till the first event. Average of λ events per time unit.

It would be hard to come up with the PDF directly here, so start with CDF. We want $F_X(t) = \mathbb{P}(X \le t) = 1 - \mathbb{P}(X > t)$

 $X \sim \text{Exp}(\lambda)$ is time till the first event. Average of λ events per time unit.

It would be hard to come up with the PDF directly here, so start with CDF. We want $F_X(t) = \mathbb{P}(X \le t) = 1 - \mathbb{P}(X > t)$

What distribution do we know about the also deals with time?

 $X \sim \text{Exp}(\lambda)$ is time till the first event. Average of λ events per time unit.

It would be hard to come up with the PDF directly here, so start with CDF. We want $F_X(t) = \mathbb{P}(X \le t) = 1 - \mathbb{P}(X > t)$

*What distribution do we know about the also deals with time…*Poisson! Poisson random variable gives us the number of events in a unit of time

 $X \sim \text{Exp}(\lambda)$ is time till the first event. Average of λ events per time unit.

It would be hard to come up with the PDF directly here, so start with CDF. We want $F_X(t) = \mathbb{P}(X \le t) = 1 - \mathbb{P}(X > t)$

*What distribution do we know about the also deals with time…*Poisson! Poisson random variable gives us the number of events in a unit of time

What Poisson are we waiting on, and what event for it tells you that $X > t$? what must be true about the number of successes in a certain time interval?

 $X \sim \text{Exp}(\lambda)$ is time till the first event. Average of λ events per time unit.

It would be hard to come up with the PDF directly here, so start with CDF. We want $F_X(t) = \mathbb{P}(X \le t) = 1 - \mathbb{P}(X > t)$

*What distribution do we know about the also deals with time…*Poisson! Poisson random variable gives us the number of events in a unit of time

What Poisson are we waiting on, and what event for it tells you that $X > t$? there must be 0 events in the first t time units

 $Y \sim \text{Poi}(\lambda t)$ (average λt events in t time units). Then, $\mathbb{P}(X > t) = \mathbb{P}(Y = 0)$

 $X \sim \text{Exp}(\lambda)$ is time till the first event. Average of λ events per time unit.

We want $F_X(t) = \mathbb{P}(X \le t) = 1 - \mathbb{P}(X > t)$

Let $Y \sim \text{Poi}(\lambda t)$ (average λt events in t time units). Then, $\mathbb{P}(X > t) = \mathbb{P}(Y = 0)$ "its take more than *t* time units for first event" = "0 successes in the first *t* time units"

Putting it all together...
\n
$$
F_X(t) = 1 - \mathbb{P}(X > t)
$$
\n
$$
= 1 - \mathbb{P}(Y = 0)
$$
\n
$$
= 1 - e^{-\lambda t} \frac{(\lambda t)^0}{0!}
$$
\n
$$
= 1 - e^{-\lambda t}
$$

$$
F_X(k) = \begin{cases} 1 - e^{-\lambda k} & \text{if } k \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

Now we know the CDF: $F_X(k) = \{$ $1 - e^{-\lambda k}$ if $k \ge 0$ 0 otherwise

What's the PDF (probability density function)?

 $f_Y(t) =$

Now we know the CDF: $F_X(k) = \{$ $1 - e^{-\lambda k}$ if $k \ge 0$ 0 otherwise

What's the PDF (probability density function)?

$$
f_Y(t) = \frac{d}{dt} \left(1 - e^{-\lambda t} \right) = 0 - \frac{d}{dt} \left(e^{-\lambda t} \right) = \lambda e^{-\lambda t}.
$$

For $t \geq 0$ it's that expression For $t < 0$ it's just 0.

Exponential Distribution- **Expectation**

 $X \sim \text{Exp}(\lambda)$ is time till the first event. Average of λ events per time unit.

 $\mathbb{E}[X] = \int_{-\infty}^{\infty}$ ∞ $z \cdot f_X(z)$ dz $=\int_0^6$ ∞ $z\cdot \lambda e^{-\lambda z}\,dz$ Let $u = z$; $dv = \lambda e^{-\lambda z} dz$ $(v = -e^{-\lambda z})$ Integrate by parts: $-ze^{-\lambda z}-\int -e^{-\lambda z}\,dz=-ze^{-\lambda z}-\frac{1}{2}$ λ $e^{-\lambda z}$ Definite Integral: $-ze^{-\lambda z}-\frac{1}{2}$ λ $e^{-\lambda z}\big|_{z=0}^{\infty} = (\lim_{z \to \infty}$ →∞ $-ze^{-\lambda z}-\frac{1}{z}$ λ $(e^{-\lambda z}) - (0 - \frac{1}{2})$ λ) By L'Hopital's Rule (lim →∞ − Z $\frac{2}{e^{\lambda z}}$ – 1 $\frac{1}{\lambda e^{\lambda z}}$) – (0 – 1 λ $) =$ (lim →∞ − 1 $\frac{1}{\lambda e^{\lambda z}}$ + 1 λ = 1 λ Don't worry about the derivation (it's here if you're interested; you're not responsible for the derivation. Just the value.

Exponential Distribution- **Variance**

 $X \sim Exp(\lambda)$ is time till the first event. Average of λ events per time unit.

 $Var(X) = E[X^2] - (E[X])^2$

 $=$

1

 λ 2

$$
= \int_{-\infty}^{\infty} z^2 \cdot f_X(z) dz - \left(\frac{1}{\lambda}\right)^2
$$

= …after a bunch of calculus

Don't worry about the actual calculus here as well \odot

 $X \sim \text{Exp}(\lambda)$

Parameter $\lambda \geq 0$ is the average number of events in a unit of time.

PDF: $f_X(k) = \{$ $\lambda e^{-\lambda k}$ if $k \geq 0$ 0 otherwise CDF: $F_X(k) = \{$ $1 - e^{-\lambda k}$ if $k \ge 0$ 0 otherwise Expectation: $\mathbb{E}[X] =$ 1 λ Variance: $Var(X) =$ 1 λ^2

PARANORMAL DISTRIBUTION

Normal Random Variable *(AKA Gaussian)*

There's not a single scenario that follows a normal distribution… But we're going to see that it shows up in a lot of real world situations!

A normal random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ has two parameters:

 $\cdot \mu = \mathbb{E}[X]$ is the mean

• σ^2 = Var(X) is the variance ($\sigma = \sqrt{Var(X)}$ is *standard deviation*) and follows this *probability density function* (a bell curve!): 2

$$
f_X(k) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(k-\mu)^2}{2\sigma^2}}
$$

Let's take a closer look at that PDF…

 $X \sim \mathcal{N}(\mu, \sigma^2)$ iff X follows the following PDF:

Changing the variance

Changing the mean

Closure of Normals *Under Scale and Shift*

When we scale a normal (multiplying by a constant) or shift it (adding a constant) *we get a normal random variable back*!

If $X \sim \mathcal{N}(\mu, \sigma^2)$

Then for $Y = aX + b$, $Y \sim N(a\mu + b, a^2\sigma^2)$

intuitively: we are just stretching and squishing the distribution – it's symmetric without major disruptions it still follows the same general shape

Normals are unique in that you get a NORMAL back.

If you multiply a binomial by 3/2 *you don't get a binomial (it's support isn't even integers!)*

Closure of Normals *Under Addition*

When we add two independent normal random variables, you get another normal random variable.

If $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ and X and Y are independent, Then, for $Z = aX + bY + c$, $Z \sim N(a\mu_X + b\mu_Y + c, a^2\sigma_X^2 + b^2\sigma_Y^2)$

Normals are unique in that you get a NORMAL back.

The sum of two dice rolls (sum of two uniform distributions) does not follow a uniform distribution

Ok…what about the **CDF**?

There is no closed form for the CDF \odot

So how *can* we find the values $F_X(k) = \mathbb{P}(X \le k)$?

And for finding the probability of X being in other ranges, we certainly don't want to bother integrating over that PDF…

We have a table with precomputed values!

AKA the "z-table", "phi-table"

We have a table containing values for the CDF of the standard normal random variable $Z \sim \mathcal{N}(0,1)$

Yes, we're going to use a table in 2024 Mainly for consistency in this class.

(In the real world, we have programming libraries like Python's scipy: stats.norm.cdf)

We have a table with precomputed values!

AKA the "z-table", "phi-table"

We have a table containing values for the CDF of the standard normal random variable $Z \sim \mathcal{N}(0,1)$ $>$ Φ is a function for CDF of $\mathcal{N}(0,1)$ $\Phi(z) = F_{z}(z) = \mathbb{P}(Z \leq z)$

We have a table with precomputed values!

AKA the "z-table", "phi-table"

We have a table containing values for the CDF of the standard normal random variable $Z \sim \mathcal{N}(0,1)$ $>$ Φ is a function for CDF of $\mathcal{N}(0,1)$ $\Phi(z) = F_{z}(z) = \mathbb{P}(Z \leq z)$

But how to go from $\mathcal{N}(\mu, \sigma^2)$ to $\mathcal{N}(0, 1)$?

We have a table for the values of $N(0,1)$. How to use this for $N(\mu, \sigma^2)$?

We will standardize X! If we have $X \sim \mathcal{N}(\mu, \sigma^2)$

1. Subtract μ to shift the distribution to have mean of 0 $\mathbb{E}[X - \mu] = \mathbb{E}[X] - \mu = \mu - \mu = 0$

2. Divide by σ to squish/stretch the distribution to have variance of 1 $Var\left(\frac{X-\mu}{\tau}\right)$ σ = 1 $\frac{1}{\sigma^2}Var(X-\mu)=$ 1 $\frac{1}{\sigma^2}Var(X) =$ 1 $\frac{1}{\sigma^2}\sigma^2=1$

$$
Z = \frac{X-\mu}{\sigma}
$$
 is a standard normal random variable: $Z \sim \mathcal{N}(0,1)$

Computing Probabilities of Normal RVs

1. Write the probability we're interested in in terms of the CDF

2. Standardize the normal random variable: $Z =$ $X-\mu$ σ

2. Round the "z-score"(s) to the hundredths place.

3. Look up the value(s) in the table

Practice!

We use $\Phi(z)$ to mean $F_Z(z)$ where $Z \sim \mathcal{N}(0,1)$.

Let $X \sim \mathcal{N}(5,4)$. What is $\mathbb{P}(X \leq 9)$? $\mathbb{P}(X \leq 9)$ $=$ \mathbb{P} $Y-5$ 2 \leq 9−5 2 standardize (algebra on both sides) $= \mathbb{P}(Z \leq$ 9−5 2) where $Z \sim N(0,1)$. $= \mathbb{P} \left(Z \leq$ 9−5 2 $= \Phi(2.00) = 0.97725$

Practice!

We use $\Phi(z)$ to mean $F_Z(z)$ where $Z \sim \mathcal{N}(0,1)$.

Let $X \sim \mathcal{N}(5,4)$. What is $\mathbb{P}(X > 9)$? $\mathbb{P}(X > 9) = 1 - \mathbb{P}(X \le 9)$ $= 1 - P$ $Y-5$ 2 \leq 9−5 2 standardize (algebra on both sides) $= 1 - P(Z \leq$ 9−5 2) where $Z \sim N(0,1)$. $= 1 - \mathbb{P} (Z \leq$ 9−5 2 $= 1 - \Phi(2.00)$ $= 1 - 0.97725 = 0.02275$

Let $X \sim \mathcal{N}(3, 2)$.

What is the probability that $1 \leq X \leq 4$?

 $\mathbb{P} (1 \leq X \leq 4)$

Let $X \sim \mathcal{N}(3, 2)$.

What is the probability that $1 \leq X \leq 4$?

How do we find $\Phi(-1.41) = \mathbb{P}(Z \le -1.41)$? Our table only has CDF values for positive numbers!

Recall: the normal distribution is symmetric $\mathbb{P}(Z \leq -1.41) =$

How do we find $\Phi(-1.41) = \mathbb{P}(Z \le -1.41)$? Our table only has CDF values for positive numbers!

Recall: the normal distribution is symmetric $\mathbb{P}(Z \leq -1.41) = \mathbb{P}(Z \geq 1.41)$ $= 1 - P(Z \le 1.41)$

 $= 1 - \Phi(1.41)$ *this is something we can do...*

Let $X \sim \mathcal{N}(3, 2)$.

What is the probability that $1 \leq X \leq 4$?

"within __ standard deviations from the mean"

What's the probability of being within two standard deviations from the mean?

$$
\mathbb{P}(\mu - 2\sigma \le X \le \mu + 2\sigma)
$$

= $\mathbb{P}(X \le \mu + 2\sigma) - \mathbb{P}(X \le \mu - 2\sigma) = \mathbb{P}\left(Z \le \frac{\mu + 2\sigma - \mu}{\sigma}\right) - \mathbb{P}\left(Z \le \frac{\mu - 2\sigma - \mu}{\sigma}\right)$
= $\Phi(2) - \Phi(-2)$
= $\Phi(2) - (1 - \Phi(2))$
= .97725 - (1 - .97725) = .9545

You'll sometimes hear statisticians refer to the "68-95-99.7 rule" which is the probability of being within 1,2, or 3 standard deviations of the mean.

Normal (aka Guassian)

When finding the probability of a normal random variable, draw a picture!! It can help reasoning about how we can use the CDF and the z-table to compute the desired region.

- 1. Write the probability we're interested in in terms of the CDF
- 2. Standardize the normal random variable: $Z =$ $X-\mu$ σ
- 2. Round the "z-score"(s) to the hundredths place.
- 3. Look up the value(s) in the table

Can you spot the normal distribution?

It turns out the normal distribution appear a LOT in the real world. Like…in the gym!

On Monday, we will talk about how and why!

Picture from reddit