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Lecture 14

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Outline for Today

• Review concepts for continuous random variables

• Zoo of continuous random variables 
•  Continuous uniform distribution

•  Exponential distribution

•  Normal distribution



Discrete Random Variables
The support has finite or countably infinite values
e.g., number of successes, number of trials till success, attendance at a class are all 
discrete because they take on a set of finite or countably infinite values

Continuous Random Variables
Random variables with a support of uncountably-infinite values
> e.g., RVs that take on any real number in some interval(s) like distance, height, time, etc. 

Some random experiments have uncountably-infinite sample spaces

> How long until the next bus shows up?

> Throwing a dart on a board (what location does the dart land?)    



Discrete RVs Continuous RVs
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Continuous RVs
Support is uncountably infinite (e.g., real numbers)
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ℙ 𝑿 = 𝒌 =
𝟏

∞
= 𝟎 so we don’t use PMF. instead...
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Linearity of expectation and properties of expectation and variance applies in both! 



Zoo of Continuous Random variables
and get practice with working with continuous random variables!



Continuous Zoo

𝒇𝑿 𝒌 =
𝟏

𝒃−𝒂
 for 𝒂 ≤ 𝒌 ≤ 𝒃

𝑭𝑿 𝒌 =
𝒙−𝒂

𝒃−𝒂
 if 𝒂 ≤ 𝒌 < 𝒃

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒇𝑿 𝒌 = 𝝀𝒆−𝝀𝒌 for 𝒌 ≥ 𝟎

𝑭𝑿 𝒌 = 𝟏 − 𝒆−𝝀𝒌 if 𝒌 ≥ 𝟎

𝔼 𝑿 =
𝟏

𝝀

𝐕𝐚𝐫 𝑿 =
𝟏

𝝀𝟐

𝑿~𝐄𝐱𝐩(𝝀)

𝒇𝑿 𝒌 =
𝟏

𝝈 𝟐𝝅
𝐞𝐱𝐩 −

𝒙 − 𝝁 𝟐

𝟐𝝈𝟐

𝑭𝑿 𝒌 = 𝚽
𝒌−𝝁

𝝈
 

𝔼 𝑿 = 𝝁
𝐕𝐚𝐫 𝑿 = 𝝈𝟐

𝑿~𝒩(𝝁, 𝝈𝟐)

It’s a smaller zoo, but it’s just as much fun! :D

This zoo defines common patterns for continuous random variables and gives us the 

PDF, CDF, expectation, and variance, so we don’t have to compute it every time! 



Continuous Uniform Distribution

Scenario: Pick a random real number between 𝑎 and 𝑏. 𝑋 is our choice.
> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif(𝑎, 𝑏)

We saw the discrete uniform distribution before – it took on an integer between 𝑎 and 𝑏
This is the continuous uniform distribution – it takes on a real number between 𝑎 and 𝑏



Continuous Uniform Distribution - PDF

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

What is the PDF, 𝑓𝑋 𝑘 ?
Draw a picture and think about the properties the PDF must have!

Fill out the poll everywhere: 

pollev.com/cse312

𝑓𝑋(𝑘)

𝑘𝑎 𝑏



Continuous Uniform Distribution - PDF

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

What is the PDF, 𝑓𝑋 𝑘 ?
Draw a picture and think about the properties the PDF must have!

𝑓𝑋(𝑘)

𝑘𝑎 𝑏

The area under a PDF must be 1. −∞

∞
𝑓𝑋 𝑧 𝑑𝑧 = 1

For the area of this 

rectangle to be 1, the 

height must be 
1

𝑏−𝑎

1/(𝑏 − 𝑎)

𝑏 − 𝑎

𝑓𝑋 𝑘 = ቐ
1

𝑏 − 𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

0 otherwise



Continuous Uniform Distribution – CDF(Visual)

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

What is the CDF, 𝐹𝑋 𝑘 ? Let’s compute this “visually”….

𝑓𝑋(𝑧)

𝑧𝑎 𝑏

1

𝑏−𝑎
 

1/(𝑏 − 𝑎)

𝑏 − 𝑎

𝐹𝑋 𝑘 =  

𝒌



Continuous Uniform Distribution – CDF(Visual)
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𝐹𝑋 𝑘 =
𝒌 − 𝒂

𝒃 − 𝒂
 𝐢𝐟 𝒂 ≤ 𝒌 ≤ 𝒃

 

𝒌



Continuous Uniform Distribution – CDF(Visual)

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

What is the CDF, 𝐹𝑋 𝑘 ? Let’s compute this “visually”….
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1

𝑏−𝑎
 

1/(𝑏 − 𝑎)

𝑏 − 𝑎

𝐹𝑋 𝑘 =

 
𝟎 𝐢𝐟 𝒌 < 𝒂

𝑘 − 𝑎

𝑏 − 𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

 

𝒌



Continuous Uniform Distribution – CDF(Visual)

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

What is the CDF, 𝐹𝑋 𝑘 ? Let’s compute this “visually”….

𝐹𝑋 𝑘 = 𝑃(𝑋 ≤ 𝑘) is the area of the green region below: 
𝑘−𝑎

𝑏−𝑎
 if 𝑎 ≤ 𝑘 < 𝑏

𝑓𝑋(𝑧)

𝑧𝑎 𝑏

1

𝑏−𝑎
 

1/(𝑏 − 𝑎)

𝑏 − 𝑎

𝒌

𝐹𝑋 𝑘 =

 
0 if 𝑘 < 𝑎

𝑘 − 𝑎

𝑏 − 𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

 
𝟏 𝐢𝐟 𝒌 ≥ 𝒃



Continuous Uniform Distribution – CDF(Integral)

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

What is the CDF, 𝐹𝑋 𝑘 ? Let’s compute this “algebraically”….

The CDF is: 𝐹𝑋 𝑘 = ∞− 

𝑘
𝑓𝑋 𝑧 𝑑𝑧

We can compute this for the ranges based on what 𝒌 is and what 𝒇𝑿 𝒛  is for the values of 𝒛 less than 𝒌

Case when 𝒌 ≤ 𝒂: 𝐹𝑋 𝑘 = ∞− 

𝑘
𝑓𝑋 𝑧 𝑑𝑧 = ∞−

𝑘
0 𝑑𝑧 = 0

Case when 𝒂 ≤ 𝒌 ≤ 𝒃: 𝐹𝑋 𝑘 =  
−∞

𝑘
𝑓𝑋 𝑧 𝑑𝑧 = 

−∞

𝑎
0 𝑑𝑧 + න

a

𝑘
1

𝑏−𝑎
𝑑𝑧 =

𝑘−𝑎

𝑏−𝑎

Case when 𝐤 > 𝒃: 𝐹𝑋 𝑘 =  
−∞

𝑘
𝑓𝑋 𝑧 𝑑𝑧 = න

a

𝑏
1

𝑏−𝑎
𝑑𝑧 + 

b

𝑘
 0𝑑𝑧 = 1

𝐹𝑋 𝑘 =

 
0 if 𝑘 < 𝑎

𝑘 − 𝑎

𝑏 − 𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

 
𝟏 𝐢𝐟 𝒌 ≥ 𝒃



> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

Using the formula for expectation….

𝔼 𝑋 = ∞−

∞
𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

         = ∞−

𝑎
𝑧 ⋅ 0 d𝑧 + 𝑎

𝑏
𝑧 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏

∞
𝑧 ⋅ 0 d𝑧

         = 0 + 𝑎

𝑏 𝑧

𝑏−𝑎
 d𝑧 + 0

         = ฬ
𝑧2

2(𝑏−𝑎)

𝑏

𝑧=𝑎
=

𝑏2

2(𝑏−𝑎)
−

𝑎2

2 𝑏−𝑎
=

𝑏2−𝑎2

2 𝑏−𝑎
=

𝑏+𝑎 𝑏−𝑎

2 𝑏−𝑎

         =
𝑎+𝑏

2

Continuous Uniform Distribution – Expectation

𝑓𝑋(𝑧)

1/(𝑏 − 𝑎)

𝑎 𝑏



Continuous Uniform Distribution – Variance

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

Var 𝑋 = 𝔼 𝑋2 − (𝔼 𝑋 )2

Computing 𝔼 𝑋2

𝔼 𝑋2 = ∞−

∞
𝑧2𝑓𝑋 𝑧 d𝑧 = ∞−

𝑎
𝑧2 ⋅ 0 d𝑧 + 𝑎

𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏

∞
𝑧2 ⋅ 0 d𝑧

= 0 + 𝑎

𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 0

=
1

𝑏−𝑎
⋅ ฬ

𝑧3

3

𝑏

𝑧=𝑎
=

1

𝑏−𝑎

𝑏3

3
−

𝑎3

3
=

1

3 𝑏−𝑎
⋅ 𝑏 − 𝑎 𝑎2 + 𝑎𝑏 + 𝑏2

=
𝑎2+𝑎𝑏+𝑏2

3

𝑓𝑋(𝑧)

1/(𝑏 − 𝑎)

𝑎 𝑏



Continuous Uniform Distribution – Variance

> 𝑋 is a uniform random real number between 𝑎 and 𝑏 -> 𝑋 ∼ Unif 𝑎, 𝑏

Var 𝑋 = 𝔼 𝑋2 − (𝔼 𝑋 )2

𝔼 𝑋2 =
𝑎2+𝑎𝑏+𝑏2

3

Plug into the formula:

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
𝑎2+𝑎𝑏+𝑏2

3
−

𝑎+𝑏

2

2
 =

𝑏−𝑎 2

12

𝑓𝑋(𝑧)

1/(𝑏 − 𝑎)

𝑎 𝑏



Continuous Uniform Distribution

𝑋~Unif(𝑎, 𝑏) (uniform real number between 𝑎 and 𝑏)

PDF: 𝑓𝑋 𝑘 = ൝
1

𝑏−𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

0 otherwise

CDF: 𝐹𝑋 𝑘 = ൞

0 if 𝑘 < 𝑎
𝑘−𝑎

𝑏−𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

1 if 𝑘 ≥ 𝑏

Expectation: 𝔼 𝑋 =
𝑎+𝑏

2

Variance: Var 𝑋 =
𝑏−𝑎 2

12



Exponential Distribution

How much time till an event occurs?
e.g., seconds till thunder, time till the first customer

With the geometric distribution, we said trials must be independent ->
“If the flip 1 is tails, the coin doesn’t remember it was tails, you’ve made no progress”

Here, waiting must not make the event happen any sooner ->
“If we don’t get success in the first 3.87sec, chances of seeing success doesn’t change”

This sounds very similar to a geometric distribution! 

> Geometric random variable is the  number of trials till success (discrete). 

> Exponential random variable is time (a real number, continuous) till success

This means memorylessness! ℙ 𝑋 ≥ 𝑘 + 1 𝑋 ≥ 1) = ℙ(𝑌 ≥ 𝑘)



Exponential Distribution- CDF

𝑋~Exp(𝜆) is time till the first event. Average of 𝜆 events per time unit. 

It would be hard to come up with the PDF directly here, so start with CDF.

We want 𝐹𝑋 𝑡 = ℙ 𝑋 ≤ 𝑡 = 1 − ℙ(𝑋 > 𝑡)
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Exponential Distribution- CDF

𝑋~Exp(𝜆) is time till the first event. Average of 𝜆 events per time unit. 

It would be hard to come up with the PDF directly here, so start with CDF.

We want 𝐹𝑋 𝑡 = ℙ 𝑋 ≤ 𝑡 = 1 − ℙ(𝑋 > 𝑡)

What Poisson are we waiting on, and what event for it tells you that 𝑋 > 𝑡?
what must be true about the number of successes in a certain time interval?

What distribution do we know about the also deals with time…Poisson!
Poisson random variable gives us the number of events in a unit of time



Exponential Distribution- CDF

𝑋~Exp(𝜆) is time till the first event. Average of 𝜆 events per time unit. 

It would be hard to come up with the PDF directly here, so start with CDF.

We want 𝐹𝑋 𝑡 = ℙ 𝑋 ≤ 𝑡 = 1 − ℙ(𝑋 > 𝑡)

What Poisson are we waiting on, and what event for it tells you that 𝑋 > 𝑡?
there must be 0 events in the first 𝒕 time units

𝑌~Poi(𝜆𝑡) (average 𝜆𝑡 events in 𝑡 time units). 
Then, ℙ 𝑿 > 𝒕 = ℙ 𝒀 = 𝟎

What distribution do we know about the also deals with time…Poisson!
Poisson random variable gives us the number of events in a unit of time



Exponential Distribution- CDF

𝑋~Exp(𝜆) is time till the first event. Average of 𝜆 events per time unit. 

We want 𝐹𝑋 𝑡 = ℙ 𝑋 ≤ 𝑡 = 1 − ℙ(𝑋 > 𝑡)

Let 𝑌~Poi(𝜆𝑡) (average 𝜆𝑡 events in 𝑡 time units). 
Then, ℙ 𝑿 > 𝒕 = ℙ 𝒀 = 𝟎
“its take more than 𝑡 time units for first event” = “0 successes in the first 𝑡 time units”

Putting it all together…
𝐹𝑋 𝑡 = 1 − ℙ 𝑋 > 𝑡

          = 1 − ℙ 𝑌 = 0

          = 1 − 𝑒−𝜆𝑡 𝜆𝑡 0

0!

          = 1 − 𝑒−𝜆𝑡

𝐹𝑋 𝑘 = ቊ1 − 𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise



Exponential Distribution- PDF

Now we know the CDF: 𝐹𝑋 𝑘 = ቊ1 − 𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise

What’s the PDF (probability density function)?

𝑓𝑌 𝑡 =



Exponential Distribution- PDF

Now we know the CDF: 𝐹𝑋 𝑘 = ቊ1 − 𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise

What’s the PDF (probability density function)?

𝑓𝑌 𝑡 =
𝑑

𝑑𝑡
1 − 𝑒−𝜆𝑡 = 0 −

𝑑

𝑑𝑡
𝑒−𝜆𝑡 = 𝜆𝑒−𝜆𝑡.

For t ≥ 0 it’s that expression

For 𝑡 < 0 it’s just 0.



Exponential Distribution- PDF

Red: 𝜆 = 5
Blue: 𝜆 = 2
Purple: 𝜆 = 0.5



Exponential Distribution- Expectation

𝑋~Exp(𝜆) is time till the first event. Average of 𝜆 events per time unit. 

𝔼 𝑋 = ∞−

∞
𝑧 ⋅ 𝑓𝑋 𝑧 d𝑧

= 0

∞
𝑧 ⋅ 𝜆𝑒−𝜆𝑧 𝑑𝑧

Let 𝑢 = 𝑧;  𝑑𝑣 = 𝜆𝑒−𝜆𝑧𝑑𝑧 (𝑣 = −𝑒−𝜆𝑧)

Integrate by parts:−𝑧𝑒−𝜆𝑧 −  −𝑒−𝜆𝑧 𝑑𝑧 = −𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧

Definite Integral:−𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧ȁz=0

∞ = ( lim
𝑧→∞

−𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧)  − (0 −

1

𝜆
) 

By L’Hopital’s Rule ( lim
𝑧→∞

−
𝑧

𝑒𝜆𝑧 −
1

𝜆𝑒𝜆𝑧)  − (0 −
1

𝜆
) = lim

𝑧→∞
−

1

𝜆𝑒𝜆𝑧 +
1

𝜆
=

1

𝜆

Don’t worry about the derivation 

(it’s here if you’re interested; 

you’re not responsible for the 

derivation. Just the value.



Exponential Distribution- Variance

𝑋~Exp(𝜆) is time till the first event. Average of 𝜆 events per time unit. 

Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2

∞− =             

∞
𝑧2 ⋅ 𝑓𝑋 𝑧 d𝑧  −

1

𝜆

2

             =  …after a bunch of calculus

             =
1

𝜆2

Don’t worry about the actual 

calculus here as well ☺ 



Exponential Distribution

𝑋~Exp(𝜆) 

Parameter 𝜆 ≥ 0 is the average number of events in a unit of time. 

PDF: 𝑓𝑋 𝑘 = ቊ𝜆𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise

CDF: 𝐹𝑋 𝑘 = ቊ1 − 𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise

Expectation: 𝔼 𝑋 =
1

𝜆

Variance: Var 𝑋 =
1

𝜆2



Normal Distribution



Normal Random Variable (AKA Gaussian)

There’s not a single scenario that follows a normal distribution…
But we’re going to see that it shows up in a lot of real world situations!

A normal random variable 𝑋~𝒩(𝜇, 𝜎2) has two parameters: 

• 𝜇 = 𝔼 𝑋  is the mean

• 𝜎2 = Var(𝑋) is the variance (𝜎 = 𝑉𝑎𝑟 𝑋  is standard deviation)

and follows this probability density function (a bell curve!): 

𝑓𝑋 𝑘 =
1

𝜎 2𝜋
𝑒

−
𝑘−𝜇 2

2𝜎2



Let’s take a closer look at that PDF…

𝑓𝑋 𝑘 =
1

𝜎 2𝜋
𝑒

−
𝑘−𝜇 2

2𝜎2

𝑋~𝒩(𝜇, 𝜎2) iff 𝑋 follows the following PDF:

exponential 

term for tails

symmetric 

around the mean

variance to 

control spread

constant for 

normalization 



Changing the variance

Green: 𝜎2 = .7
Red 𝜎2 = 1
Blue: 𝜎2 = 2



Changing the mean

Green: 𝜎2 = .7, 𝜇 = 0
Purple 𝜎2 = .7, 𝜇 = −1



Closure of Normals Under Scale and Shift

When we scale a normal (multiplying by a constant) or shift it (adding a 
constant) we get a normal random variable back!

If 𝑋~𝒩 𝜇, 𝜎2

Then for 𝑌 = 𝑎𝑋 + 𝑏, 𝑌~𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2

intuitively: we are just stretching and squishing the distribution – it’s symmetric 
without major disruptions it still follows the same general shape

Normals are unique in that you get a NORMAL back.

If you multiply a binomial by 3/2 you don’t get a binomial 
(it’s support isn’t even integers!)



Closure of Normals Under Addition

When we add two independent normal random variables, you get 
another normal random variable.

If 𝑋~𝒩 𝜇𝑋, 𝜎𝑋
2  and 𝑌~𝒩 𝜇𝑌, 𝜎𝑌

2  and 𝑋 and 𝑌 are independent,

Then, for 𝑍 = 𝑎𝑋 + 𝑏𝑌 + 𝑐, Z~𝒩 𝑎𝜇𝑋 + 𝑏𝜇𝑌 + 𝑐, 𝑎2𝜎𝑋
2 + 𝑏2𝜎𝑌

2

Normals are unique in that you get a NORMAL back.

The sum of two dice rolls (sum of two uniform distributions) does 
not follow a uniform distribution



Ok…what about the CDF?

There is no closed form for the CDF  

So how can we find the values 𝐹𝑋 𝑘 = ℙ(X ≤ k)?

And for finding the probability of 𝑋 being in other ranges, we certainly 
don’t want to bother integrating over that PDF…



We have a table with precomputed values!

We have a table containing values for 

the CDF of the standard normal 

random variable 𝒁~𝒩(0,1)

Yes, we’re going to use a table in 2024  

Mainly for consistency in this class.

(In the real world, we have programming 

libraries like Python’s scipy: stats.norm.cdf)

AKA the “z-table”, “phi-table”



We have a table with precomputed values!

We have a table containing values for 

the CDF of the standard normal 

random variable 𝒁~𝒩(0,1)
> Φ is a function for CDF of 𝒩(0,1)
> Φ z = FZ z = ℙ(Z ≤ 𝑧)

AKA the “z-table”, “phi-table”



We have a table with precomputed values!

We have a table containing values for 

the CDF of the standard normal 

random variable 𝒁~𝒩(0,1)
> Φ is a function for CDF of 𝒩(0,1)
> Φ z = FZ z = ℙ(Z ≤ 𝑧)

AKA the “z-table”, “phi-table”



But how to go from 𝒩 𝜇, 𝜎2  to 𝒩(0,1)?

We have a table for the values of 𝒩(0,1). How to use this for 𝒩 𝜇, 𝜎2 ?

We will standardize 𝑋! If we have X~𝒩(𝜇, 𝜎2)

1. Subtract 𝝁 to shift the distribution to have mean of 0
    𝔼 𝑋 − 𝜇 = 𝔼 𝑋 − 𝜇 = 𝜇 − 𝜇 = 0 

2. Divide by 𝝈 to squish/stretch the distribution to have variance of 1

𝑉𝑎𝑟
𝑋−𝜇

𝜎
=

1

𝜎2 𝑉𝑎𝑟 𝑋 − 𝜇 =
1

𝜎2 𝑉𝑎𝑟 𝑋 =
1

𝜎2 𝜎2 = 1

𝑍 =
𝑋−𝜇

𝜎
 is a standard normal random variable: 𝑍~𝒩(0,1)



Computing Probabilities of Normal RVs

1. Write the probability we’re interested in in terms of the CDF

2. Standardize the normal random variable: 𝑍 =
𝑋−𝜇

𝜎

2. Round the “z-score”(s) to the hundredths place.

3. Look up the value(s) in the table



Practice!

Let 𝑋~𝒩(5,4). What is ℙ 𝑋 ≤ 9 ?

ℙ 𝑋 ≤ 9  

= ℙ
𝑌−5

2
≤

9−5

2
  standardize (algebra on both sides)

= ℙ(𝑍 ≤
9−5

2
) where 𝑍~𝑁(0,1).

= ℙ 𝑍 ≤
9−5

2
= Φ 2.00 = 0.97725

We use Φ(𝑧) to mean 
𝐹𝑍(𝑧) where 𝑍~𝒩(0,1).

5 9



5 9

Practice!

Let 𝑋~𝒩(5,4). What is ℙ 𝑋 > 9 ?

ℙ 𝑋 > 9 = 1 − ℙ(𝑋 ≤ 9)

= 1 − ℙ
𝑌−5

2
≤

9−5

2
  standardize (algebra on both sides)

= 1 − ℙ(𝑍 ≤
9−5

2
) where 𝑍~𝑁(0,1).

= 1 − ℙ 𝑍 ≤
9−5

2
= 1 − Φ 2.00

= 1 − 0.97725 = 0.02275

We use Φ(𝑧) to mean 
𝐹𝑍(𝑧) where 𝑍~𝒩(0,1).





More practice

Let 𝑋~𝒩(3, 2).

What is the probability that 1 ≤ 𝑋 ≤ 4?

ℙ 1 ≤ 𝑋 ≤ 4

3 41



More practice

Let 𝑋~𝒩(3, 2).

What is the probability that 1 ≤ 𝑋 ≤ 4?

ℙ 1 ≤ 𝑋 ≤ 4

= ℙ 𝑋 ≤ 4 − ℙ 𝑋 ≤ 1

=  ℙ
𝑋−3

2
≤

4−3

2
− ℙ

𝑋−3

2
≤

1−3

2
=

= ℙ 𝑍 ≤
4−3

2
− ℙ 𝑍 ≤

1−3

2
 where 𝑍~𝒩(0,1)

= Φ .71 − Φ −1.41

3 41



More practice

How do we find Φ −1.41 = ℙ 𝑍 ≤ −1.41 ? Our table only has CDF 
values for positive numbers! 

Recall: the normal distribution is symmetric

ℙ 𝑍 ≤ −1.41 =

1 1.41−1.41



More practice

How do we find Φ −1.41 = ℙ 𝑍 ≤ −1.41 ? Our table only has CDF 
values for positive numbers! 

Recall: the normal distribution is symmetric

ℙ 𝑍 ≤ −1.41 = ℙ 𝑍 ≥ 1.41

= 1 − ℙ 𝑍 ≤ 1.41

= 1 − Φ(1.41) this is something we can do…

1 0.71−1.41



More practice

Let 𝑋~𝒩(3, 2).

What is the probability that 1 ≤ 𝑋 ≤ 4?

ℙ 1 ≤ 𝑋 ≤ 4

= ℙ 𝑋 ≤ 4 − ℙ 𝑋 ≤ 1

=  ℙ
𝑋−3

2
≤

4−3

2
− ℙ

𝑋−3

2
≤

1−3

2
=

= ℙ 𝑍 ≤
4−3

2
− ℙ 𝑍 ≤

1−3

2
 where 𝑍~𝒩(0,1)

= Φ .71 − Φ −1.41 = Φ .71 − (1 − Φ 1.41))

= 0.76115 − 1 − 0.92073 = 𝟎. 𝟔𝟖𝟏𝟖𝟖
3 41



“within __ standard deviations from the mean”

What’s the probability of being within two standard deviations from the mean?

ℙ 𝜇 − 2𝜎 ≤ 𝑋 ≤ 𝜇 + 2𝜎

= ℙ 𝑋 ≤ 𝜇 + 2𝜎 − ℙ 𝑋 ≤ 𝜇 − 2𝜎 = ℙ 𝑍 ≤
𝜇+2𝜎−𝜇

𝜎
− ℙ 𝑍 ≤

𝜇−2𝜎−𝜇

𝜎

= Φ 2 − Φ −2

= Φ 2 − 1 − Φ 2

= .97725 − 1 − .97725 = .9545

You’ll sometimes hear statisticians refer to the “68-95-99.7 rule” which is the 
probability of being within 1,2, or 3 standard deviations of the mean.



Normal (aka Guassian)

When finding the probability of a normal random variable, draw a 
picture!! It can help reasoning about how we can use the CDF and the 
z-table to compute the desired region. 

1. Write the probability we’re interested in in terms of the CDF

2. Standardize the normal random variable: 𝑍 =
𝑋−𝜇

𝜎

2. Round the “z-score”(s) to the hundredths place.

3. Look up the value(s) in the table



Can you spot the normal distribution?

It turns out the normal distribution appear a 
LOT in the real world. Like…in the gym! 

On Monday, we will talk about how and why! 

Picture from reddit
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