
Continuous Random Variables
CSE 312 24Su

Lecture 13

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 

You play a game where a fair coin is tossed until it comes up heads. The payoff is 2𝑛 dollars, where 𝑛 

is the number of tosses. The expected value of this game is infinite, which is surprising because no 

one would realistically pay an extremely high entry fee to play. (convince yourself of this using the 

geometric distribution PMF and LOTUS!)

Fun fact!



Logistics

• Please fill out midterm feedback form (closes tonight!) 

• Some people have not taken the midterm, so do not discuss it yet

• HW3 grades will be released later today

• Midterm grades released early next week

• HW4 released today evening
•  Coding part



Zoo of Discrete Random Variables



Scenario: Negative Binomial 

Example

You’re playing a carnival game, and there are 𝑟 little kids 
nearby who all want a stuffed animal. You can win a 
single game (and thus win one stuffed animal) with 
probability 𝑝 (independently each time) How many times 
will you need to play the game before every kid gets 
their toy?

Run independent trials with probability 𝒑. How many trials do you 
need until 𝒓 successes?



Try it

Run independent trials with probability 𝒑. How many trials do you need 
until 𝒓 successes?

𝑋 is the number of trials till (and including) the r’th success

What is the support of 𝑋?

What’s the PMF? 
i.e., what is the probability it takes exactly 𝑘 trials till the r’th success?

Fill out the poll everywhere: pollev.com/cse312



Try it

Run independent trials with probability 𝒑. How many trials do you need 
until 𝒓 successes?

𝑋 is the number of trials till (and including) the r’th success

What is the support of 𝑋? Ω𝑋 = {𝑟, 𝑟 + 1, 𝑟 + 2, … }

What’s the PMF? 
i.e., what is the probability it takes exactly 𝑘 trials till the r’th success?



Negative Binomial Analysis

Run independent trials with probability 𝑝
𝑋 is the number of trials till (and including) the r’th success

What’s the PMF? Well how would we know 𝑋 = 𝑘?



Negative Binomial Analysis

What’s the PMF? Well how would we know 𝑋 = 𝑘?

Of the first 𝑘 − 1 trials, 𝑟 − 1 must be successes. 
And trial 𝑘 must be a success.

1. We want exactly 𝒓 − 𝟏 of the first 𝒌 − 𝟏 to be successes – this sounds 
like a binomial! It’s the 𝑝𝑌(𝑟 − 1) where 𝑌~Bin(𝑘 − 1, 𝑟 − 1): 

𝑘−1
𝑟−1

1 − 𝑝 𝑘−1−(𝑟−1)𝑝𝑟−1 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟−1

2. Multiply by 𝑝, probability 𝒌’th trial is success

Total: 𝑝𝑋 𝑘 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟



Negative Binomial Analysis

𝑋 is the number of trials till we see 𝑟 successes

To see 𝑟 successes:

We do trials until we see success 1. 

Then do trials until success 2.

…do trials until success 𝑟.

What’s the expectation and variance (hint: linearity)?
How can we write 𝑋 as a sum of random variables? 

Fill out the poll everywhere: pollev.com/cse312



Negative Binomial Analysis

𝑋 is the number of trials till we see 𝑟 successes

To see 𝑟 successes:

We do trials until we see success 1. 

Then do trials until success 2.

…do trials until success 𝑟.

The total number of flips is…the sum of geometric random variables!



Negative Binomial Analysis

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑟 .

𝑍𝑖 are called “independent and identically distributed” or “i.i.d.’

Because they are independent…and have identical pmfs.



Negative Binomial Analysis

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑟 .

𝔼 𝑿 = 𝔼 𝒁𝟏 + 𝒁𝟐 + ⋯ 𝒁𝒓 = 𝔼 𝒁𝟏 + 𝔼 𝒁𝟐 + ⋯ + 𝔼 𝒁𝒓 = 𝒓 ⋅
𝟏

𝒑

𝑍𝑖 are called “independent and identically distributed” or “i.i.d.’

Because they are independent…and have identical pmfs.



Negative Binomial Analysis

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑟 .

𝔼 𝑋 = 𝔼 𝑍1 + 𝑍2 + ⋯ 𝑍𝑟 = 𝔼 𝑍1 + 𝔼 𝑍2 + ⋯ + 𝔼 𝑍𝑟 = 𝑟 ⋅
1

𝑝

𝐕𝐚𝐫 𝑿 = 𝐕𝐚𝐫(𝒁𝟏 + 𝒁𝟐 + ⋯ + 𝒁𝒓) = 𝐕𝐚𝐫 𝒁𝟏 + 𝐕𝐚𝐫 𝒁𝟐 + ⋯ + 𝑽𝒂𝒓(𝒁𝒓) 

             =  𝒓 ⋅
𝟏−𝒑

𝒑𝟐

𝑍𝑖 are called “independent and identically distributed” or “i.i.d.’

Because they are independent…and have identical pmfs.



Negative Binomial Analysis

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑟 .

𝔼 𝑋 = 𝔼 𝑍1 + 𝑍2 + ⋯ 𝑍𝑟 = 𝔼 𝑍1 + 𝔼 𝑍2 + ⋯ + 𝔼 𝑍𝑟 = 𝑟 ⋅
1

𝑝

𝐕𝐚𝐫 𝑿 = 𝐕𝐚𝐫(𝒁𝟏 + 𝒁𝟐 + ⋯ + 𝒁𝒓) = 𝐕𝐚𝐫 𝒁𝟏 + 𝐕𝐚𝐫 𝒁𝟐 + ⋯ + 𝑽𝒂𝒓(𝒁𝒓) 

             =  𝒓 ⋅
𝟏−𝒑

𝒑𝟐

𝑍𝑖 are called “independent and identically distributed” or “i.i.d.’

Because they are independent…and have identical pmfs.

because they are independent



Negative Binomial

𝑋~NegBin(r, p)

Parameters: 𝑟: the number of successes needed, 𝑝 the probability of 
success in a single trial

𝑋 is the number of trials needed to get the 𝑟th success.

PMF: 𝑝𝑋 𝑘 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟

CDF: 𝐹𝑋(𝑘) is ugly, don’t bother with it.

Expectation: 𝔼 𝑋 =
𝑟

𝑝

Variance: Var X =
r 1−p

𝑝2



Scenario: Hypergeometric

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw 𝑛 balls out of the urn without replacement uniformly at random. 
How many purple balls do we get in this sample?
𝑋 is the number of purple balls in this sample of size 𝑛



Hypergeometric: Analysis (PMF)

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw 𝑛 balls out of the urn without replacement uniformly at random. 
How many purple balls do we get in this sample?
𝑋 is the number of purple balls in this sample of size 𝑛

If you draw out 𝒏 balls, what is the probability you see 𝒌 purple ones?

K k

N

n-k

n



Hypergeometric: Analysis (PMF)

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw 𝑛 balls out of the urn without replacement uniformly at random. 
How many purple balls do we get in this sample?
𝑋 is the number of purple balls in this sample of size 𝑛

If you draw out 𝒏 balls, what is the probability you see 𝒌 purple ones?

> Of the 𝐾 purple, we draw out 𝑘, choose which 𝑘 will be drawn

> Of the 𝑁 − 𝐾 other balls, we will draw out 𝑛 − 𝑘, 
   choose which 𝑁 − 𝐾 − (𝑛 − 𝑘) will be removed. 

Sample space all subsets of size 𝑛

ℙ 𝑋 = 𝑘 =
𝐾
𝑘

𝑁−𝐾
𝑛−𝑘

𝑁
𝑛

K k

N

n-k

n



Hypergeometric: Analysis (Expectation)

𝑋 is the number of purple balls in this sample of size 𝑛

Decompose: 𝑋 = 𝐷1 + 𝐷2 + ⋯ + 𝐷𝑛 where 𝐷𝑖 is the indicator that draw 𝑖 is purple

Apply LoE: 𝔼 𝐷1 + ⋯ 𝐷𝑛 = 𝔼 𝐷1 + ⋯ + 𝔼 𝐷𝑛

Conquer: What is 𝔼 𝐷𝑖 = ℙ(𝐷𝑖 = 1)?

> ℙ 𝐷1 = 1 = 𝐾/𝑁

> What about 𝐷2? seems like it depends on whether the first was purple…

     ℙ 𝐷2 = 1 =
𝐾−1

𝑁−1
⋅

𝐾

𝑁
+

𝐾

𝑁−1
⋅

𝐾−𝑁

𝑁
=

𝐾 𝐾−𝑁+𝐾−1

𝑁 𝑁−1
=

𝐾

𝑁

In general ℙ 𝐷𝑖 = 1 =
𝐾

𝑁

It might feel counterintuitive, but it’s true! 



Hypergeometric: Analysis (Expectation)

𝑋 is the number of purple balls in this sample of size 𝑛

Decompose: 𝑋 = 𝐷1 + 𝐷2 + ⋯ + 𝐷𝑛 where 𝐷𝑖 is the indicator that draw 𝑖 is purple

Apply LoE: 𝔼 𝐷1 + ⋯ 𝐷𝑛 = 𝔼 𝐷1 + ⋯ + 𝔼 𝐷𝑛

Conquer: after some thinking… 𝔼 𝐷𝑖 =
𝐾

𝑁

So, 𝔼 𝑋 = 𝑛 ⋅
𝐾

𝑁



Hypergeometric: Analysis (Expectation)

𝑋 is the number of purple balls in this sample of size 𝑛

Decompose: 𝑋 = 𝐷1 + 𝐷2 + ⋯ + 𝐷𝑛 where 𝐷𝑖 is the indicator that draw 𝑖 is purple

Apply LoE: 𝔼 𝐷1 + ⋯ 𝐷𝑛 = 𝔼 𝐷1 + ⋯ + 𝔼 𝐷𝑛

Conquer: after some thinking… 𝔼 𝐷𝑖 =
𝐾

𝑁

So, 𝔼 𝑋 = 𝑛 ⋅
𝐾

𝑁

Can we do the same for variance? Can we use linearity of variance? 



Hypergeometric: Analysis (Expectation)

𝑋 is the number of purple balls in this sample of size 𝑛

Decompose: 𝑋 = 𝐷1 + 𝐷2 + ⋯ + 𝐷𝑛 where 𝐷𝑖 is the indicator that draw 𝑖 is purple

Apply LoE: 𝔼 𝐷1 + ⋯ 𝐷𝑛 = 𝔼 𝐷1 + ⋯ + 𝔼 𝐷𝑛

Conquer: after some thinking… 𝔼 𝐷𝑖 =
𝐾

𝑁

So, 𝔼 𝑋 = 𝑛 ⋅
𝐾

𝑁

Can we do the same for variance? Can we use linearity of variance? 

No! The 𝐷𝑖 are dependent. Even if they have the same probability. 



Hypergeometric: Analysis

𝔼[𝑋]

= 𝔼 𝐷1 + ⋯ 𝐷𝑛 = 𝔼 𝐷1 + ⋯ + 𝔼 𝐷𝑛 = 𝑛 ⋅
𝐾

𝑁

Can we do the same for variance?

No! The 𝐷𝑖 are dependent. Even if they have the same probability. 



Hypergeometric Random Variable

𝑋~HypGeo(𝑁, 𝐾, 𝑛)

𝑋 is the number of success balls drawn in the sample.

Parameters: A total of 𝑁 balls in an urn, of which 𝐾 are successes. 
Draw 𝑛 balls without replacement.

PMF: 𝑝𝑋 𝑘 =
𝐾
𝑘

𝑁−𝐾
𝑛−𝑘

𝑁
𝑛

Expectation: 𝔼 𝑋 =
𝑛𝐾

𝑁

Variance: Var 𝑋 = 𝑛 ⋅
𝐾

𝑁
⋅

𝑁−𝐾

𝑁
⋅

𝑁−𝑛

𝑁−1



Zoo! 

𝒑𝑿 𝒌 =
𝟏

𝒃 − 𝒂 + 𝟏

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝒃 − 𝒂 + 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒑𝑿 𝒌 = 𝟏 − 𝒑 𝒌−𝟏𝒑

𝔼 𝑿 =
𝟏

𝒑

𝐕𝐚𝐫 𝑿 =
𝟏 − 𝒑

𝒑𝟐

𝑿~𝐆𝐞𝐨(𝒑)

𝒑𝑿 𝟎 = 𝟏 − 𝒑;
𝒑𝑿(𝟏) = 𝒑

𝔼 𝑿 = 𝒑

𝐕𝐚𝐫 𝑿 = 𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐞𝐫(𝒑)

𝒑𝑿 𝒌 =
𝒌 − 𝟏

𝒓 − 𝟏
𝒑𝒓 𝟏 − 𝒑 𝒌−𝒓

𝔼 𝑿 =
𝒓

𝒑

𝐕𝐚𝐫 𝑿 =
𝒓(𝟏 − 𝒑)

𝒑𝟐

𝑿~𝐍𝐞𝐠𝐁𝐢𝐧(𝒓, 𝒑)

𝒑𝑿 𝒌 =
𝒏

𝒌
𝒑𝒌 𝟏 − 𝒑 𝒏−𝒌

𝔼 𝑿 = 𝒏𝒑

𝐕𝐚𝐫 𝑿 = 𝒏𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐢𝐧(𝒏, 𝒑)

𝒑𝑿 𝒌 =

𝑲
𝒌

𝑵−𝑲
𝒏−𝒌

𝑵
𝒏

𝔼 𝑿 = 𝒏
𝑲

𝑵

𝐕𝐚𝐫 𝑿 =
𝑲(𝑵 − 𝑲)(𝑵 − 𝒏)

𝑵𝟐(𝑵 − 𝟏)

𝑿~𝐇𝐲𝐩𝐆𝐞𝐨(𝑵, 𝑲, 𝒏)

𝒑𝑿 𝒌 =
𝝀𝒌𝒆−𝝀

𝒌!

𝔼 𝑿 = 𝝀

𝐕𝐚𝐫 𝑿 = 𝝀

𝑿~𝐏𝐨𝐢(𝝀)



Discrete Zoo of Random Variables
• Uniform: Every integer between 𝑎 and 𝑏 are equally likely
  Un𝑖𝑓 𝑎, 𝑏

• Bernoulli: Whether there is success in one trial
  Ber(𝑝) is 1 with probability 𝒑 and 0 otherwise

• Binomial: Number of successes in 𝑛 independent trials
  Bin 𝑛, 𝑝  - 𝑛 independent trials, probability 𝑝 of success on each trial

• Geometric: Number of trials till first success
Geo 𝑝  - probability 𝑝 of success on each trial

• Poisson: Number of successes in a time interval
Poi 𝜆  - average number of successes in the time interval

• Negative Binomial: Number of trials till 𝑟’th success
NegBin 𝑟, 𝑝  - probability 𝑝 of success on each trial, want trials till the 𝑟’th success

• Hypergeometric: Number of successes when drawing a sample
HypGeo 𝑁, 𝐾, 𝑛  - drawing a sample of 𝑛 items from a set of 𝑁 with 𝐾 successes



Zoo Takeaways

You can do relatively complicated counting/probability calculations 
much more quickly than you could week 1!

You can now explain why your problem is a zoo variable and save 
explanation on homework (and save yourself calculations in the future).

Don’t spend extra effort memorizing…but be careful when looking up 
Wikipedia articles.
The exact definitions of the parameters can differ (is a geometric random variable 
the number of failures before the first success, or the total number of trials 
including the success?)



Continuous Random Variables

Goal for today is to get intuition on what’s different in the continuous case

ASK QUESTIONS (always! but today especially ☺)



Discrete Random Variables
The kind that we’ve been working with up till now! 

The support has finite or countably infinite values
e.g., number of successes, number of trials till success, attendance at a class are all 
discrete because they take on a set of finite or countably infinite values

Continuous Random Variables
Random variables with a support of uncountably-infinite values
> e.g., RVs that take on any real number in some interval(s) like distance, height, time, etc. 

Some random experiments have uncountably-infinite sample spaces

> How long until the next bus shows up?

> Throwing a dart on a board (what location does the dart land?)    



Why Need New Rules?

Random Experiment: choose a random real number between 0 and 1

What’s the probability the number is between 0.4 and 0.5?

> For discrete spaces, we’d ask for 
𝐸

Ω

> So we get 
∞

∞
  

When working with continuous random experiments, we’ll almost 
always use continuous random variables to interact with these spaces 

𝑋 is the number we choose. We want ℙ(0.4 ≤ 𝑋 ≤ 0.5)



Probability Density Function (PDF)
Analogous to PMF in a discrete random variable



How to describe probability of a single value?

For discrete random variables, we defined the PMF: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).



How to describe probability of a single value?

For discrete random variables, we defined the PMF: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

Can we use the same for continuous random variables?
 What is the probability that a person’s height is exactly 5.678123589 feet

 What is the probability that a bus arrives exactly 6 hours, 23 minutes and 
 2976427909 seconds from now?

𝑝𝑋 0.135 = ℙ 𝑋 = 0.135 =



How to describe probability of a single value?

For discrete random variables, we defined the PMF: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

Can we use the same for continuous random variables?
 What is the probability that a person’s height is exactly 5.678123589 feet

 What is the probability that a bus arrives exactly 6 hours, 23 minutes and 
 2976427909 seconds from now?

𝑝𝑋 0.135 = ℙ 𝑋 = 0.135 =
1

∞
 = 0 No!



How to describe probability of a single value?

For discrete random variables, we defined the PMF: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

Can we use the same for continuous random variables?
 What is the probability that a person’s height is exactly 5.678123589 feet

 What is the probability that a bus arrives exactly 6 hours, 23 minutes and 
 2976427909 seconds from now?

𝑝𝑋 0.135 = ℙ 𝑋 = 0.135 =
1

∞
 = 0 No!

Instead, we use the probability density function (PDF)

𝒇𝑿(𝒌) is the density (not probability!) of the continuous random variable 
𝑋 at the value 𝑘



Probability Density Function

For discrete random variables, we defined the PMF: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

For continuous random variables, we use the probability density function 

𝒇𝑿(𝒌) is the density (not probability!) of the continuous random variable 
𝑋 at the value 𝑘

Discrete (PMF) Continuous (PDF)

𝑝𝑌 𝑘 ≥ 0 𝑓𝑋 𝑘 ≥ 0



𝑘∈Ω𝑌

𝑝𝑌(𝑘) = 1 න
−∞

∞

𝑓𝑋(𝑘)  d𝑘 = 1



Probability Density Function

For discrete random variables, we defined the PMF: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

For continuous random variables, we use the probability density function 

𝒇𝑿(𝒌) is the density (not probability!) of the continuous random variable 
𝑋 at the value 𝑘

e.g., PMF for a discrete RV, 𝑿 e.g., PDF for a continuous RV, 𝑿



Probability Density Function

For discrete random variables, we defined the PMF: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

For continuous random variables, we use the probability density function 

𝒇𝑿(𝒌) is the density of the continuous random variable 𝑋 at the value 𝑘

How do we use the PDF?

To compute probabilities of events!

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 𝑎 =

𝑏
𝑓𝑋 𝑧  d𝑧

integrating is analogous to summing

e.g., PDF for a continuous RV, 𝑿



Probability Density Function (example)

𝑋 is a uniform real number in [0,1]. Let’s derive the PDF for 𝑋!

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 0 ≤ 𝑋 ≤ 1 = =       

ℙ(𝑋 is negative) = =   

ℙ .4 ≤ 𝑋 ≤ .5 = = 



Probability Density Function (example)

𝑋 is a uniform real number in [0,1]. Let’s derive the PDF for 𝑋!

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 0 ≤ 𝑋 ≤ 1 =  1 = 0

1
𝑓𝑋 𝑧  d𝑧

ℙ(𝑋 is negative) = 0 = ∞−

0
𝑓𝑋 𝑧  d𝑧

ℙ .4 ≤ 𝑋 ≤ .5 = 0.1 = 4.

.5
𝑓𝑋(𝑧)  d𝑧



Probability Density Function (example)

𝑋 is a uniform real number in [0,1]. Let’s derive the PDF for 𝑋!

What should 𝑓𝑋(𝑘) be to make all those events integrate to the right 
values?

𝑓𝑋 𝑘 = ቊ
0 if 𝑘 < 0 or 𝑘 > 1
1 if 0 ≤ 𝑘 ≤ 1

10



Probability vs. Density

Key idea: integrating the PDF gives us probabilities

But the PDF itself does not give us probabilities

The number that best represents ℙ 𝑋 = .1  is 0

But, this is different from  𝑓𝑋 .1 = 1

For continuous probability spaces:

> Impossible events have probability 0
> But even though probability of a specific value is 0, it’s still possible



What exactly do the values in the PDF mean? 

Let’s look at the event 𝑋 ≈ .2 

For a very small value of 𝜖,

ℙ 𝑋 ≈ .2 =  ℙ(.2 − 𝜖/2 ≤ 𝑋 ≤ .2 + 𝜖/2)

= 𝜖/2−2.

−2+𝜖/2
𝑓𝑋 𝑧  d𝑧 ≈ height ⋅ width

= 𝑓𝑋 .2 ⋅ 𝜖

What happens if we look at the ratio 

ℙ(𝑋≈.2)

ℙ(𝑋≈.5)

.2



What exactly do the values in the PDF mean? 

Let’s look at the event 𝑋 ≈ .2 

For a very small value of 𝜖,

ℙ 𝑋 ≈ .2 =  ℙ(.2 − 𝜖/2 ≤ 𝑋 ≤ .2 + 𝜖/2)

= 𝜖/2−2.

−2+𝜖/2
𝑓𝑋 𝑧  d𝑧 ≈ height ⋅ width

= 𝑓𝑋 .2 ⋅ 𝜖

What happens if we look at the ratio 

ℙ(𝑋≈.2)

ℙ(𝑋≈.5)
=

ℙ .2−
𝜖

2
≤𝑋≤.2+

𝜖

2

ℙ .5−
𝜖

2
≤𝑋≤.5+

𝜖

2

=
𝜖𝑓𝑋(.2)

𝜖𝑓𝑋(.5)
=

𝑓𝑋 .2

𝑓𝑋(.5)

.2 .5



What exactly do the values in the PDF mean? 

The number that when integrated over gives the probability of an event. 

Equivalently, it’s number such that:

-it is always non-negative

-integrating over all real numbers gives 1.

-comparing 𝑓𝑋 𝑘  and 𝑓𝑋(ℓ) gives the relative chances of 𝑿 being near 𝒌 
or ℓ. 



Cumulative Distribution Function (CDF)



What’s a CDF?

𝐹𝑋 𝑘 = ℙ 𝑋 ≤ 𝑘 = ∞−

𝑘
𝑓𝑋 𝑧  d𝑧 

So how do I get from CDF to PDF? Taking the derivative!

d

d𝑘
𝐹𝑋(𝑘) =

d

𝑑𝑘
∞−

𝑘
𝑓𝑋 𝑧  d𝑧 = 𝑓𝑋(𝑘)

The Cumulative Distribution Function 𝐹𝑋 𝑘 = ℙ(𝑿 ≤ 𝒌) 

analogous to the CDF for discrete variables.



Comparing Discrete and Continuous

Discrete Random Variables Continuous Random Variables

Probability 𝟎 Equivalent to impossible All impossible events have probability 0, but not 

conversely.

Relative Chances PMF: 𝑝𝑋 𝑘 = ℙ(𝑋 = 𝑘) PDF 𝑓𝑋(𝑘) gives chances relative to 𝑓𝑋(𝑘′)

Events Sum over PMF to get probability Integrate PDF to get probability

Convert from CDF to 

PMF

Sum up PMF to get CDF.

Look for “breakpoints” in CDF to get PMF. 

Integrate PDF to get CDF.

Differentiate CDF to get PDF.

𝔼[𝑿]


𝜔

𝑋(𝜔) ⋅ 𝑓𝑋(𝜔) න
−∞

∞

𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

𝔼[𝒈 𝑿 ]


𝜔

𝑔 𝑋 𝜔 ⋅ 𝑓𝑋(𝜔) න
−∞

∞

𝑔(𝑧) ⋅ 𝑓𝑋 𝑧  d𝑧

𝐕𝐚𝐫(𝑿) 𝔼 𝑋2 − 𝔼 𝑋 2

𝔼 𝑋2 − 𝔼 𝑋 2 = න
−∞

∞

𝑧 − 𝔼 𝑋 2𝑓𝑋 𝑧  d𝑧



Expectation and Variance



What about expectation?

For a continuous random variable 𝑋, we define:

𝔼 𝑋 = ∞−

∞
𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

Just replace summing over the PMF with integrating the PDF.

It still represents the average value of 𝑋.

For a discrete random variable 𝑋, we have 𝔼 𝑋 = σ𝑘∈Ω𝑋
𝑘 ⋅ 𝑝𝑋(𝑘)



Expectation of a function

Again, analogous to the discrete case; just replace summation with 
integration and pmf with the pdf.

For any function 𝑔 and any continuous random variable, 𝑋:

 𝔼 𝑔 𝑋 = ∞−

∞
𝑔 𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

For a discrete random variable 𝑋, we have 𝔼 𝑔(𝑋) = σ𝑘∈Ω𝑋
𝑔(𝑘) ⋅ 𝑝𝑋(𝑘)



Linearity of Expectation

Still true!

Won’t show you the proof – for just 𝔼[𝑎𝑋 + 𝑏], it’s
𝔼 𝑎𝑋 + 𝑏 = ∞−

∞
𝑎𝑋 𝑘 + 𝑏 𝑓𝑋(𝑘) d𝑘 

= ∞−

∞
𝑎𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + ∞−

∞
𝑏𝑓𝑋 𝑘 𝑑𝑘

= 𝑎 ∞−

∞
𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + 𝑏 ∞−

∞
𝑓𝑋 𝑘 𝑑𝑘

= 𝑎𝔼 𝑋 + 𝑏

𝔼 𝒂𝑿 + 𝒃𝒀 + 𝒄 = 𝒂𝔼 𝑿 + 𝒃𝔼 𝒀 + 𝒄
For all 𝑿, 𝒀; even if they’re continuous.



Variance

No surprises here

𝐕𝐚𝐫 𝑿 = 𝔼 𝑿𝟐 − 𝔼 𝑿 𝟐 = න
−∞

∞

𝒇𝑿(𝒌) 𝒌 − 𝔼 𝑿 𝟐 𝐝𝒌



Let’s calculate an expectation

Let 𝑋 be a uniform random number between 𝑎 and 𝑏.

𝔼 𝑋 = ∞−

∞
𝑧 ⋅ 𝑓𝑋 𝑧  d𝑧

= ∞−

𝑎
𝑧 ⋅ 0 d𝑧 + 𝑎

𝑏
𝑧 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏

∞
𝑧 ⋅ 0 d𝑧

= 0 + 𝑎

𝑏 𝑧

𝑏−𝑎
 d𝑧 + 0

= ฬ
𝑧2

2(𝑏−𝑎)

𝑏

𝑧=𝑎
=

𝑏2

2(𝑏−𝑎)
−

𝑎2

2 𝑏−𝑎
=

𝑏2−𝑎2

2 𝑏−𝑎
=

𝑏+𝑎 𝑏−𝑎

2 𝑏−𝑎
=

𝑎+𝑏

2



What about 𝔼 𝑔 𝑋

Let 𝑋~Unif(𝑎, 𝑏), what about 𝔼 𝑋2 ?

𝔼 𝑋2 = ∞−

∞
𝑧2𝑓𝑋 𝑧 d𝑧

= ∞−

𝑎
𝑧2 ⋅ 0 d𝑧 + 𝑎

𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏

∞
𝑧2 ⋅ 0 d𝑧

= 0 + 𝑎

𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 0

=
1

𝑏−𝑎
⋅ ฬ

𝑧3

3

𝑏

𝑧=𝑎
=

1

𝑏−𝑎

𝑏3

3
−

𝑎3

3
=

1

3 𝑏−𝑎
⋅ 𝑏 − 𝑎 𝑎2 + 𝑎𝑏 + 𝑏2

=
𝑎2+𝑎𝑏+𝑏2

3



Let’s assemble the variance

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
𝑎2+𝑎𝑏+𝑏2

3
−

𝑎+𝑏

2

2

=
4(𝑎2+𝑎𝑏+𝑏2)

12
−

3(𝑎2+2𝑎𝑏+𝑏2)

12

=
𝑎2−2𝑎𝑏+𝑏2

12

=
𝑎−𝑏 2

12



Continuous Uniform Distribution

𝑋~Unif(𝑎, 𝑏) (uniform real number between 𝑎 and 𝑏)

PDF: 𝑓𝑋 𝑘 = ൝
1

𝑏−𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

0 otherwise

CDF: 𝐹𝑋 𝑘 = ൞

0 if 𝑘 < 𝑎
𝑘−𝑎

𝑏−𝑎
 if 𝑎 ≤ 𝑘 ≤ 𝑏

1 if 𝑘 ≥ 𝑏

𝔼 𝑋 =
𝑎+𝑏

2

Var 𝑋 =
𝑏−𝑎 2

12
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