discrete zoo II LECTURE 11

Uniform : Every integer between <i>a</i> and <i>b</i> are	Poisson: Number of successes in a time
equally likely	interval⊠
Bernoulli: Whether there is success in one tria	Negative Binomial: Number of trials till r'th
Binomial: Number of successes in <i>n</i>	success
independent trials	Hypergeometric: Number of successes
Geometric: Number of trials till first success	when drawing a sample

ZOO OF DISCRETE RANDOM VARIABLES II

GEOMETRIC DISTRIBUTION

The number of independent trials until the first success

 $X \sim \text{Geo}(p)$ p is the probability of success for one trial.

 $\Omega_X = \{1,2,3,4,...\}$ PMF: $p_X(k) = (1-p)^{k-1}p$ for $k \in \{1,2,3,...\}$ CDF: $F_X(k) = 1 - (1-p)^k$ for $k \in \mathbb{N}$ Expectation: $\mathbb{E}[X] = \frac{1}{p}$ Variance: $Var(X) = \frac{1-p}{p^2}$

MEMORYLESS

 $P(X \ge a+b | X \ge a) = P(X \ge b)$

POISSON DISTRIBUTION

The number of success/incidents in a certain time interval

examples:

 $X \sim \text{Poi}(\lambda)$ $\mathsf{PMF:} \ p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \text{ (for } k \in \mathbb{N})$ $\mathsf{CDF:} \ F_X(k) = e^{-\lambda} \sum_{i=0}^{\lfloor k \rfloor} \frac{\lambda^i}{i!}$ $\mathsf{Expectation:} \ \mathbb{E}[X] = \lambda$ $\mathsf{Variance:} \ \mathsf{Var}(X) = \lambda$ X

X

••	NEGATIVE BINOMIAL DISTRI	BUTION	×
Number of independent trials ti $X \sim \text{NegBin}(r, p)$ PMF: $p_X(k) = \binom{k-1}{r-1}(1-p)^{k-r}p^r$ CDF: $F_X(k)$ is ugly, don't bother with it Expectation: $\mathbb{E}[X] = \frac{r}{p}$ Variance: $\text{Var}(X) = \frac{r(1-p)}{p^2}$	II the r'th success examples:		
Deriving the PMF	Deriving the Expectation	Deriving the Variance	

HYPERGEOMETRIC DISTRIBUTION

You have an urn with N balls, of which K are targets. You are going to draw n balls out of the urn without replacement. How many target balls do we get in this sample?

Deriving the PMF
Deriving the Expectation