
Discrete Random Variable Zoo II
CSE 312 24Su

Lecture 11

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Logistics

> Coding part for HW3 due tonight

> Couple extra office hours this weekend before the midterm

> Review session today at 4pm

> Review session during lecture slot on Monday
    Bring questions/topics you want to review!!! 



Discrete Zoo of Random Variables

There are common patterns of random experiments 

We’re going to identify some common patterns, and compute 

the support, PMF, CDF, expectation, and variance for them, so 

when we see a random variable that matches that pattern, we don’t 

have to re-compute everything! 



Discrete Uniform Distribution

𝑋~Unif(𝑎, 𝑏)

𝑋 is a uniformly random integer between 𝑎 and 𝑏 (inclusive)

Parameter 𝑎 is the minimum value in the support, 𝑏 is the maximum 
value in the support.

PMF: 𝑝𝑋 𝑘 =
1

𝑏−𝑎+1
 for 𝑘 ∈ ℤ, 𝑎 ≤ 𝑘 ≤ 𝑏

CDF: 𝐹𝑋 𝑘 =
𝑘−𝑎+1

𝑏−𝑎+1
 for 𝑘 ∈ ℤ, 𝑎 ≤ 𝑘 ≤ 𝑏.

Expectation: 𝔼 𝑋 =
𝑎+𝑏

2
 

Variance: Var 𝑋 =
(𝑏−𝑎)(𝑏−𝑎+2)

12



Bernoulli Distribution

𝑋~Ber(𝑝)

𝑋 is the indicator random variable that the trial was a success.

Parameter 𝑝 is probability of success on the trial.

PMF: 𝑝𝑋 0 = 1 − 𝑝, 𝑝𝑋 1 = 𝑝

CDF: 𝐹𝑋 𝑘 = ቐ
0 if 𝑘 < 0
1 − 𝑝 if 0 ≤ 𝑘 < 1
1 if 𝑘 ≥ 1

Expectation: 𝔼 𝑋 = 𝑝

Variance: Var 𝑋 = 𝑝(1 − 𝑝)



Binomial Distribution

𝑋~Bin(𝑛, 𝑝)

𝑋 is the number of successes across 𝑛 independent trials.

𝑛 is the number of independent trials. 
𝑝 is the probability of success for one trial.

PMF: 𝑝𝑋 𝑘 = 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 for 𝑘 ∈ {0,1, … , 𝑛}

CDF: 𝐹𝑋 is ugly.

Expectation: 𝔼 𝑋 = 𝑛𝑝

Variance: Var 𝑋 = 𝑛𝑝(1 − 𝑝)



Discrete Zoo of Random Variables

• Uniform: Every integer between 𝑎 and 𝑏 are equally likely
  Un𝑖𝑓 𝑎, 𝑏

• Bernoulli: Whether there is success in one trial
  Ber(𝑝) is 1 with probability 𝒑 and 0 otherwise

• Binomial: Number of successes in 𝑛 independent trials
  Bin 𝑛, 𝑝  - 𝑛 independent trials, probability 𝑝 of success on each trial



Example: Unpopular Donuts

A donut shop serves 50 people a day and serves a mango chili lime 
donut. The probability that a customer chooses this donut is 0.2. All 
customers’ choices are independent of each other. 

What is the probability that exactly 10 people choose this flavor? 

What is the probability that at least 3 people choose this flavor? 
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PMF: 𝑝𝑋 𝑘 = 𝑛
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Example: Unpopular Donuts

A donut shop serves 50 people a day and serves a mango chili lime 
donut. The probability that a customer chooses this donut is 0.2. All 
customers’ choices are independent of each other. 

What is the probability that exactly 10 people choose this flavor? 

𝑋~ number of people who choose this flavor. 𝑋~Bin(50, 0.2)

ℙ 𝑋 = 10 = 50
10

0.210 1 − 0.2 50−10

What is the probability that at least 3 people choose this flavor? 

ℙ 𝑋 ≥ 3 = 1 − ℙ 𝑋 < 3 = 1 − (ℙ 𝑋 = 0 + ℙ 𝑋 = 1 + ℙ 𝑋 = 2 )
                  = 1 − ( 50

0
0.20(0.8)50−0+ 50

1
0.21 0.8 50−1 + 50

2
0.22 0.8 50−2)



Discrete Zoo of Random Variables (today!)
• Uniform: Every integer between 𝑎 and 𝑏 are equally likely
  Un𝑖𝑓 𝑎, 𝑏

• Bernoulli: Whether there is success in one trial
  Ber(𝑝) is 1 with probability 𝒑 and 0 otherwise

• Binomial: Number of successes in 𝑛 independent trials
  Bin 𝑛, 𝑝  - 𝑛 independent trials, probability 𝑝 of success on each trial

• Geometric: Number of trials till first success
Geo 𝑝  - probability 𝑝 of success on each trial

• Poisson: Number of successes in a time interval
Poi 𝜆  - average number of successes in the time interval

• Negative Binomial: Number of trials till 𝑟’th success
NegBin 𝑟, 𝑝  - probability 𝑝 of success on each trial, want trials till the 𝑟’th success

• Hypergeometric: Number of successes when drawing a sample
HypGeo 𝑁, 𝐾, 𝑛  - drawing a sample of 𝑛 items from a set of 𝑁 with 𝐾 successes



Situation: Geometric

How many independent trials are needed until the first success?

Familiar Example:

You flip a coin (which comes up heads with probability 𝑝) independently 
until you get a heads. How many flips did you need?



Geometric Distribution

𝑋~Geo(𝑝)

𝑋 is the number of trials needed to see the first success.

𝑝 is the probability of success for one trial.



Geometric Distribution Examples

How many bits can we write before one is incorrect?

How many questions do you have to answer until you get one right?

How many times can you run an experiment until it fails for the first time?



Geometric Distribution

𝑋~Geo(𝑝)

𝑋 is the number of trials needed to see the first success.

𝑝 is the probability of success for one trial.

 Ω𝑋 = {1,2,3,4, … }

PMF: 𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝 for 𝑘 ∈ {1,2,3, … }

CDF: 𝐹𝑋 𝑘 = 1 − 1 − 𝑝 𝑘 for 𝑘 ∈ ℕ

Expectation: 𝔼 𝑋 =
1

p

Variance: Var 𝑋 =
1−𝑝

𝑝2



Geometric: Analysis

Both the expectation and variance are new to us. 

The derivations of both are uninformative
Every derivation I’ve ever seen has wild algebra tricks.



Geometric: Expectation

𝔼 𝑋 = σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1𝑝

= 𝑝 σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1 = 𝑝 ⋅

1

𝑝2 =
1

𝑝
.

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
2−𝑝

𝑝2 −
1

𝑝2 =
1−𝑝

𝑝2

Intuition: for small 𝑝 lots of variance 

(might have to wait a long time, and it’s 

variable)

For large 𝑝 very little variance (for 𝑝 = 1 

there’s no variation at all!) 

Intuition: Smaller 𝑝 means longer wait



Geometric Property

Suppose you’re flipping coins independently until you see a heads.

𝑿~𝐆𝐞𝐨(𝒑) is number of flips till the first head

> The first three came up tails. 

> 𝒀 is number of flips left until you see the first head

Does 𝒀 also follow 𝐆𝐞𝐨(𝒑)? 

T T T ? ? ? …?

Fill out the poll everywhere: 

pollev.com/cse312



Geometric random variables are called “memoryless”

Suppose you’re flipping coins independently until you see a heads.

𝑿~𝐆𝐞𝐨(𝒑) is number of flips till the first head

> The first three came up tails. 

> 𝒀 is number of flips left until you see the first head after the first 3 tails

Does 𝒀 also follow 𝐆𝐞𝐨(𝒑)? Yes!

The coin “forgot” it already came up tails 3 times.

Geometric Property - Memoryless

T T T ? ? ? …?



Formally…

Let 𝑋 be the number of flips needed, 𝑌 be the flips after the third.

ℙ 𝑌 = 𝑘 𝑋 ≥ 3) = ℙ(𝑌 = 𝑘 ∩ 𝑋 ≥ 3)/ℙ(𝑋 ≥ 3)

1−𝑝 𝑘+3−1𝑝

1−𝑝 3

= 1 − 𝑝 𝑘−1𝑝

Which is 𝑝𝑋(𝑘).



Formally…

Let 𝑋 be the number of flips needed, 𝑌 be the flips after the third.

ℙ 𝑌 = 𝑘 𝑋 ≥ 3) = ℙ(𝑌 = 𝑘 ∩ 𝑋 ≥ 3)/ℙ(𝑋 ≥ 3)

1−𝑝 𝑘+3−1𝑝

1−𝑝 3

= 1 − 𝑝 𝑘−1𝑝

Which is 𝑝𝑋(𝑘).

A geometric distribution is memoryless: 

> If 𝑋~Geo(𝑝)
   ℙ 𝑋 ≥ 𝑎 + 𝑏 𝑋 ≥ 𝑎 = ℙ(𝑋 ≥ 𝑏)



Scenario: The Poisson Distribution

We’re trying to count the number of times something happens in some 
interval of time.

> We know the average number that happen (i.e. the expectation)

> Each occurrence is independent of the others. 

> There are a VERY large number of “potential sources” for those events, few of    
which happen.



Scenario: The Poisson Distribution

We’re trying to count the number of times something happens in some 
interval of time.

> We know the average number that happen (i.e. the expectation)

> Each occurrence is independent of the others. 

> There are a VERY large number of “potential sources” for those events, few of    
which happen.

Example of situation that’s hard to model without a Poisson distribution

We want to model number of people who buy a mango chili lime donut in a day

> We did this with a binomial distribution, and said there are 50 people, each 

who have probability 0.2 of buying the donut -> Bin(50,0.2)

> Realistically though, there are way more people who could possibly come into 

the donut shop, and it’s very hard to model the probability of each person 

choosing to come into the shop and buy the donut today

> With a Poisson distribution we can model this when all we know is the average 

number of people buying that donut in a day from historical data



The Poisson Distribution

Classic applications:
How many traffic accidents occur in Seattle in a day

How many major earthquakes occur in a year (not including aftershocks)

How many customers visit a bakery in an hour

Why not just use counting coin flips? 
What are the flips…the number of cars? Every person who might visit the bakery? 
There are way too many of these to count exactly or think about dependency 
between. But a Poisson might accurately model what’s happening.



It’s a model – it’s doesn’t fully reflect the real world

By modeling choice, we mean that we’re choosing math that we think 
represents the real world as best as possible

Is every traffic accident really independent? 

Not really, one causes congestion, which causes angrier drivers. Or both 
might be caused by bad weather/more cars on the road. 

But we assume they are (because the dependence is so weak that the 
model is useful). 



Poisson Distribution

𝑋~Poi(𝜆)

𝑋 is the number of incidents seen in a particular time interval.

Let 𝜆 be the average number of incidents in that time interval. 

Support: ℕ (all natural numbers) 

PMF: 𝑝𝑋 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
 (for 𝑘 ∈ ℕ)

CDF: 𝐹𝑋 𝑘 = 𝑒−𝜆 σ
𝑖=0
⌊𝑘⌋ 𝜆𝑖

𝑖!

Expectation: 𝔼 𝑋 = 𝜆

Variance: Var 𝑋 = 𝜆



Poisson Distribution (sample PMFs)
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Let’s take a closer look at that PMF

𝑝𝑋 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
 (for 𝑘 ∈ ℕ)

If this is a real PMF, it should sum to 1. 

σ𝑘=0
∞ 𝜆𝑘𝑒−𝜆

𝑘!

= 𝑒−𝜆 σ𝑘=0
∞ 𝜆𝑘

𝑘!

Taylor Series for  𝑒𝑥

෍
𝑘=0

∞ 𝑥𝑘

𝑘!
= 𝑒𝑥 = 𝑒−𝜆𝑒𝜆 = 𝑒0 = 1



Let’s check something…the expectation

𝔼 𝑋 = σ𝑘=0
∞ 𝑘 ⋅ 𝑒−𝜆 𝜆𝑘

𝑘!

= σ𝑘=1
∞ 𝑘 ⋅ 𝑒−𝜆 𝜆𝑘

𝑘!
 first term is 0. 

= σ𝑘=1
∞ 𝑒−𝜆 𝜆𝑘

(𝑘−1)!
   cancel the 𝑘.

= 𝜆 σ𝑘=1
∞ 𝑒−𝜆 𝜆𝑘−1

(𝑘−1)!
   factor out 𝜆.

= 𝜆 σ𝑗=0
∞ 𝑒−𝜆 𝜆𝑗

(𝑗)!
   Define 𝑗 = 𝑘 − 1

= 𝜆 ⋅ 1 The summation is just the pmf!



Where did this expression come from?

𝑿 is the number of car accidents in a day

If we knew the exact number of cars, and they all had identical 
probabilities of causing an accident…

It’d be just like counting the number of heads in 𝑛 flips of a bunch of 
coins (the coins are just VERY biased).

The Poisson is a certain limit as 𝑛 → ∞ but 𝑛𝑝 (the expected number of 
accidents) stays constant. 



Scenario: Negative Binomial 

Example

You’re playing a carnival game, and there are 𝑟 little kids 
nearby who all want a stuffed animal. You can win a 
single game (and thus win one stuffed animal) with 
probability 𝑝 (independently each time) How many times 
will you need to play the game before every kid gets 
their toy?

Run independent trials with probability 𝒑. How many trials do you 
need until 𝒓 successes?



Try it

Run independent trials with probability 𝒑. How many trials do you need 
until 𝒓 successes?

𝑋 is the number of trials till (and including) the r’th success

What is the support of 𝑋?

What’s the PMF? 
i.e., what is the probability it takes exactly 𝑘 trials till the r’th success?

Fill out the poll everywhere: pollev.com/cse312



Try it

Run independent trials with probability 𝒑. How many trials do you need 
until 𝒓 successes?

𝑋 is the number of trials till (and including) the r’th success

What is the support of 𝑋? Ω𝑋 = {𝑟, 𝑟 + 1, 𝑟 + 2, … }

What’s the PMF? 
i.e., what is the probability it takes exactly 𝑘 trials till the r’th success?



Negative Binomial Analysis

Run independent trials with probability 𝑝
𝑋 is the number of trials till (and including) the r’th success

What’s the PMF? Well how would we know 𝑋 = 𝑘?



Negative Binomial Analysis

What’s the PMF? Well how would we know 𝑋 = 𝑘?

Of the first 𝑘 − 1 trials, 𝑟 − 1 must be successes. 
And trial 𝑘 must be a success.

1. We want exactly 𝒓 − 𝟏 of the first 𝒌 − 𝟏 to be successes – this sounds 
like a binomial! It’s the 𝑝𝑌(𝑟 − 1) where 𝑌~Bin(𝑘 − 1, 𝑟 − 1): 

𝑘−1
𝑟−1

1 − 𝑝 𝑘−1−(𝑟−1)𝑝𝑟−1 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟−1

2. Multiply by 𝑝, probability 𝒌’th trial is success

Total: 𝑝𝑋 𝑘 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟



Negative Binomial Analysis

𝑋 is the number of trials till we see 𝑟 successes

To see 𝑟 successes:

We do trials until we see success 1. 

Then do trials until success 2.

…do trials until success 𝑟.

What’s the expectation and variance (hint: linearity)?
How can we write 𝑋 as a sum of random variables? 

Fill out the poll everywhere: pollev.com/cse312



Negative Binomial Analysis

𝑋 is the number of trials till we see 𝑟 successes

To see 𝑟 successes:

We do trials until we see success 1. 

Then do trials until success 2.

…do trials until success 𝑟.

The total number of flips is…the sum of geometric random variables!



Negative Binomial Analysis

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑟 .

𝔼 𝑋 = 𝔼 𝑍1 + 𝑍2 + ⋯ 𝑍𝑟 = 𝔼 𝑍1 + 𝔼 𝑍2 + ⋯ + 𝔼 𝑍𝑟 = 𝑟 ⋅
1

𝑝

𝑍𝑖 are called “independent and identically distributed” or “i.i.d.’

Because they are independent…and have identical pmfs.



Negative Binomial Analysis

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑟 .

Var 𝑋 = Var(𝑍1 + 𝑍2 + ⋯ + 𝑍𝑟)

Up until now we’ve just used the observation that 𝑋 = 𝑍1 + ⋯ + 𝑍𝑟 .

= Var 𝑍1 + Var 𝑍2 + ⋯ + Var(𝑍𝑟) because the 𝒁𝒊 are independent.

= 𝑟 ⋅
1−𝑝

𝑝2



Negative Binomial

𝑋~NegBin(r, p)

Parameters: 𝑟: the number of successes needed, 𝑝 the probability of 
success in a single trial

𝑋 is the number of trials needed to get the 𝑟th success.

PMF: 𝑝𝑋 𝑘 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟

CDF: 𝐹𝑋(𝑘) is ugly, don’t bother with it.

Expectation: 𝔼 𝑋 =
𝑟

𝑝

Variance: Var X =
r 1−p

𝑝2



Scenario: Hypergeometric

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw 𝑛 balls out of the urn without replacement. How many purple balls 
do we get in this sample?
𝑋 is the number of purple balls in this sample



Hypergeometric: Analysis (PMF)

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw 𝑛 balls out of the urn without replacement. How many purple balls 
do we get in this sample?
𝑋 is the number of purple balls in this sample

If you draw out 𝒏 balls, what is the probability you see 𝒌 purple ones?

K k

N

n-k

n



Hypergeometric: Analysis (PMF)

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw 𝑛 balls out of the urn without replacement. How many purple balls 
do we get in this sample?
𝑋 is the number of purple balls in this sample

If you draw out 𝒏 balls, what is the probability you see 𝒌 purple ones?

Of the 𝐾 purple, we draw out 𝑘 choose which 𝑘 will be drawn

Of the 𝑁 − 𝐾 other balls, we will draw out 𝑛 − 𝑘, 
choose which 𝑁 − 𝐾 − (𝑛 − 𝑘) will be removed. 

Sample space all subsets of size 𝑛

ℙ 𝑋 = 𝑘 =
𝐾
𝑘

𝑁−𝐾
𝑛−𝑘

𝑁
𝑛

K k

N

n-k

n



Hypergeometric: Analysis (Expectation)

𝑋 is the number of purple balls in the sample

𝑋 = 𝐷1 + 𝐷2 + ⋯ + 𝐷𝑛

Where 𝐷𝑖 is the indicator that draw 𝑖 is purple.

𝐷1 is 1 with probability 𝐾/𝑁.

What about 𝐷2?

ℙ 𝐷2 = 1 =
𝐾−1

𝑁−1
⋅

𝐾

𝑁
+

𝐾

𝑁−1
⋅

𝐾−𝑁

𝑁
=

𝐾 𝐾−𝑁+𝐾−1

𝑁 𝑁−1
=

𝐾

𝑁

In general ℙ 𝐷𝑖 = 1 =
𝐾

𝑁

It might feel counterintuitive, but it’s true! 



Hypergeometric: Analysis

𝔼[𝑋]

= 𝔼 𝐷1 + ⋯ 𝐷𝑛 = 𝔼 𝐷1 + ⋯ + 𝔼 𝐷𝑛 = 𝑛 ⋅
𝐾

𝑁

Can we do the same for variance?

No! The 𝐷𝑖 are dependent. Even if they have the same probability. 



Hypergeometric Random Variable

𝑋~HypGeo(𝑁, 𝐾, 𝑛)

𝑋 is the number of success balls drawn in the sample.

Parameters: A total of 𝑁 balls in an urn, of which 𝐾 are successes. 
Draw 𝑛 balls without replacement.

PMF: 𝑝𝑋 𝑘 =
𝐾
𝑘

𝑁−𝐾
𝑛−𝑘

𝑁
𝑛

CDF: 𝔼 𝑋 =
𝑛𝐾

𝑁

Variance: Var 𝑋 = 𝑛 ⋅
𝐾

𝑁
⋅

𝑁−𝐾

𝑁
⋅

𝑁−𝑛

𝑁−1



Zoo! 

𝒑𝑿 𝒌 =
𝟏

𝒃 − 𝒂 + 𝟏

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝒃 − 𝒂 + 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒑𝑿 𝒌 = 𝟏 − 𝒑 𝒌−𝟏𝒑

𝔼 𝑿 =
𝟏

𝒑

𝐕𝐚𝐫 𝑿 =
𝟏 − 𝒑

𝒑𝟐

𝑿~𝐆𝐞𝐨(𝒑)

𝒑𝑿 𝟎 = 𝟏 − 𝒑;
𝒑𝑿(𝟏) = 𝒑

𝔼 𝑿 = 𝒑

𝐕𝐚𝐫 𝑿 = 𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐞𝐫(𝒑)

𝒑𝑿 𝒌 =
𝒌 − 𝟏

𝒓 − 𝟏
𝒑𝒓 𝟏 − 𝒑 𝒌−𝒓

𝔼 𝑿 =
𝒓

𝒑

𝐕𝐚𝐫 𝑿 =
𝒓(𝟏 − 𝒑)

𝒑𝟐

𝑿~𝐍𝐞𝐠𝐁𝐢𝐧(𝒓, 𝒑)

𝒑𝑿 𝒌 =
𝒏

𝒌
𝒑𝒌 𝟏 − 𝒑 𝒏−𝒌

𝔼 𝑿 = 𝒏𝒑

𝐕𝐚𝐫 𝑿 = 𝒏𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐢𝐧(𝒏, 𝒑)

𝒑𝑿 𝒌 =

𝑲
𝒌

𝑵−𝑲
𝒏−𝒌

𝑵
𝒏

𝔼 𝑿 = 𝒏
𝑲

𝑵

𝐕𝐚𝐫 𝑿 =
𝑲(𝑵 − 𝑲)(𝑵 − 𝒏)

𝑵𝟐(𝑵 − 𝟏)

𝑿~𝐇𝐲𝐩𝐆𝐞𝐨(𝑵, 𝑲, 𝒏)

𝒑𝑿 𝒌 =
𝝀𝒌𝒆−𝝀

𝒌!

𝔼 𝑿 = 𝝀

𝐕𝐚𝐫 𝑿 = 𝝀

𝑿~𝐏𝐨𝐢(𝝀)



Zoo Takeaways

You can do relatively complicated counting/probability calculations 
much more quickly than you could week 1!

You can now explain why your problem is a zoo variable and save 
explanation on homework (and save yourself calculations in the future).

Don’t spend extra effort memorizing…but be careful when looking up 
Wikipedia articles.
The exact definitions of the parameters can differ (is a geometric random variable 
the number of failures before the first success, or the total number of trials 
including the success?)



Discrete Zoo of Random Variables
• Uniform: Every integer between 𝑎 and 𝑏 are equally likely
  Un𝑖𝑓 𝑎, 𝑏

• Bernoulli: Whether there is success in one trial
  Ber(𝑝) is 1 with probability 𝒑 and 0 otherwise

• Binomial: Number of successes in 𝑛 independent trials
  Bin 𝑛, 𝑝  - 𝑛 independent trials, probability 𝑝 of success on each trial

• Geometric: Number of trials till first success
Geo 𝑝  - probability 𝑝 of success on each trial

• Poisson: Number of successes in a time interval
Poi 𝜆  - average number of successes in the time interval

• Negative Binomial: Number of trials till 𝑟’th success
NegBin 𝑟, 𝑝  - probability 𝑝 of success on each trial, want trials till the 𝑟’th success

• Hypergeometric: Number of successes when drawing a sample
HypGeo 𝑁, 𝐾, 𝑛  - drawing a sample of 𝑛 items from a set of 𝑁 with 𝐾 successes



Halfway Point!



What have we done over the past 4 weeks?

Counting
Combinations, permutations, indistinguishable elements, starts and bars, inclusion-
exclusion…

Probability foundations
Events, sample space, axioms of probability, expectation, variance

Conditional probability
Conditioning, independence, Bayes’ Rule

Refined our intuition
Especially around Bayes’ Rule



What’s next?

Continuous random variables.
So far our sample spaces have been countable. What happens if we want to choose 
a random real number?

How do expectation, variance, conditioning, etc. change in this new context?

Mostly analogous to discrete cases, but with integrals instead of sums.

Analysis when it’s inconvenient (or impossible) to exactly calculate 
probabilities.
Central Limit Theorem (approximating discrete distributions with continuous ones)

Tail Bounds/Concentration (arguing it’s unlikely that a random variable is far from its 
expectation)

A first taste of making predictions from data (i.e., a bit of ML)
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