
Variance + Discrete Zoo I
CSE 312 24Su

Lecture 10

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 

Over a large number of trials, the average result will get closer to the expected value.

This principle is why casinos make consistent profits. Even though individual results can vary 

widely, the “law of large numbers” ensures that the casino’s profit prevails over time.

Fun fact!



Logistics

• HW3 due tonight

• no HW released tonight! (HW4 released next Wednesday)

• Mid-quarter Feedback 

• Midterm information on website
•  Similar length to practice midterms but you will have 2x for it (110 minutes)

•  4 questions 

•  T/F/short answer, counting/probability, conditional probability, random 
variables



Outline for Today

> Review linearity of expectation

> Variance (last way to describe random variables!) 

> Start learning about the zoo of discrete random variables



One More Linearity of Expectation Example! 



Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each 
place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 
(equally likely)

Let 𝑋 be the number of people that end up in front of their own name 
tag. Find 𝔼 𝑋 .

Decompose: 

What 𝑋𝑖 can we define that have the needed information?

LOE:

Conquer:



Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in 
front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 (equally likely)

𝑋 is the number of people that end up in front of their own name tag. Find 𝔼 𝑋 .

Decompose: Define 𝑋𝑖 as follows:

𝑋𝑖 = ቊ
 1 if person i sits infront of their own name tag
 0 otherwise

          

Note: 𝑋 = Σ𝑖=1
𝑛 𝑋𝑖

LOE:
𝔼 𝑋 = 𝔼[𝛴𝑖=1

𝑛 𝑋𝑖] = Σ𝑖=1
𝑛 𝔼 𝑋𝑖

Conquer:
These 𝑋𝑖 are not independent!

That’s ok!!



Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in 
front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 (equally likely)

𝑋 is the number of people that end up in front of their own name tag. Find 𝔼 𝑋 .

Decompose: Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if person i sits infront of their own name tag
 0 otherwise

          𝑋 = Σ𝑖=1
𝑛 𝑋𝑖

LOE:
𝔼 𝑋 = 𝔼[𝛴𝑖=1

𝑛 𝑋𝑖] = Σ𝑖=1
𝑛 𝔼 𝑋𝑖

Conquer:

𝔼 𝑋𝑖 = 𝑃 𝑋𝑖 = 1 =
1

𝑛 − 1
 𝔼 𝑋 = 𝑛 ⋅ 𝔼 𝑋𝑖 =

𝑛

𝑛 − 1



How to know what indicators to define?

•"find the expected number of students (from n in total) who show up in class" 
-> maybe define indicator RVs 𝐗𝐢 ​ that is 𝟏 if the i'th student shows up 
-> 𝐗 = σ𝐢=𝟏

𝐧 𝐗𝐢 = 𝐗

•"find the expected number of defective items in a batch of 100 items" 
-> maybe define indicator RVs 𝑿𝒊 ​ that is 𝟏 if the i'th item is defective 
-> 𝑿 = σ𝒊=𝟏

𝒏 𝑿𝒊

•"find the expected number of A that have B (B is some property)“
-> maybe define indicator RVs 𝑿𝒊 ​​ for the i'th possible A that is 1 if that A has B



Techniques For Finding Expectation

1. Definition of Expectation

When the support is small enough and we 
can find the PMF of X

2. Linearity of Expectation

When we can break X into a sum
Break into indicator RVs if it’s some kind of count

3. LOTUS (Law of the unconscious 
statistician)

When it’s a function of X (e.g, X2)

𝔼 𝑋 = ෍

𝑘∈Ω𝑋

𝑘 ⋅ ℙ(𝑋 = 𝑘)

𝔼 𝑋 + 𝑌 = 𝔼[𝑋] + 𝔼 Y

𝔼 𝑔(𝑋) = ෍

𝑘∈Ω𝑋

𝑔(𝑘) ⋅ ℙ(𝑋 = 𝑘)



Where are we?

A random variable is a way to summarize what outcome you saw.

Support (set of values RV can take), 

Probability Mass Function & Cumulative Distribution Function 
describe probabilities

The expectation of a RV is its average value. (summarizes a RV)

> Expectation is linear:  𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌].
-𝑋 + 𝑌 is a random variable – it’s a function that outputs a number given an 
outcome (or, here, a combination of outcomes).

𝑋
Ω is set of 

possible 

outcomes

Outcome

𝝎 ∈ 𝛀
Quantitative 

value



Variance



Variance

Another one number summary of a random variable.

But wait, we already have expectation, what’s this for?



Consider these two games

Would you be willing to play these games?

Game 1: I will flip a fair coin; if it’s heads, I pay you $1. If it’s tails, you pay 
me $1. Let 𝑋1 be your profit if you play game 1

Game 2: I will flip a fair coin; if it’s heads, I pay you $10,000. If it’s tails, 
you pay me $10,000. Let 𝑋2 be your profit if you play game 2.

Both games are “fair” (𝔼 𝑋1 = 𝔼 𝑋2 = 0)

0 1-1

𝟏

𝟐

𝟏

𝟐

0 10,000-10,000

𝟏

𝟐

𝟏

𝟐



What’s the difference

Expectation tells you what the average will be…

But it doesn’t tell you how “extreme” your results could be.

Nor how likely those extreme results are.

Game 2 has many (well, only) very extreme results. 

In expectation they “cancel out” but if you can only play once…

…it would be nice to measure that.



Designing a Measure – Try 1

Let’s measure how far all the outcomes are away from the center, 
weighted on how likely they are

σ𝜔(ℙ 𝜔 ⋅ 𝑋 𝜔 − 𝔼 𝑋 ) 

What happens with Game 2?
1

2
⋅ 100000 − 0 +

1

2
⋅ (−100000 − 0)

5000 + (−5000) = 0

What happens with Game 1?
1

2
⋅ 1 − 0 +

1

2
⋅ (−1 − 0)

1

2
+ (−

1

2
) = 0



Designing a Measure – Try 2

How do we prevent cancelling? Squaring the distances makes 
everything positive.

σ𝜔(ℙ 𝜔 ⋅ 𝑋 𝜔 − 𝔼 𝑋 𝟐) 

What happens with Game 2?
1

2
⋅ 100000 − 0 𝟐 +

1

2
⋅ −100000 − 0 𝟐

5,000,000,000 + 5,000,000,000 = 1010

What happens with Game 1?
1

2
⋅ 1 − 0 𝟐 +

1

2
⋅ −1 − 0 𝟐

1

2
+

1

2
= 1

This is the variance! 



Why Squaring

Why not absolute value? Or Fourth power?

> Squaring is nicer algebraically.

> Our goal with variance was to talk about the spread of results.     
    Squaring makes extreme results even more extreme. 

> Fourth power over-emphasizes the extreme results (for our purposes).



Variance

The first form forms are the definition. The last one is an algebra trick.

Intuition: Variance is a quantity that measures on average how “far”
the random variable is from its expectation
> higher values means values are very spread out
> smaller values means values are closer and tend to be closer to expectation

The variance of a random variable 𝑋 is 

Var 𝑋 = ෍

𝜔

ℙ 𝜔 ⋅ 𝑋 𝜔 − 𝔼 𝑋 2 = 𝔼 𝑋 − 𝔼 𝑋 2

 = 𝔼[𝑋2] − 𝔼 𝑋 2

Variance

Use LOTUS to compute 𝑬[𝑿𝟐] (𝑔 𝑋 = 𝑋2)



Proof of Calculation Trick

𝔼 𝑋 − 𝔼 𝑋 2 = 𝔼 𝑋2 − 2𝑋𝔼 𝑋 + 𝔼 𝑋 2  expanding the square

= 𝔼 𝑋2 − 𝔼 2𝑋𝔼 𝑋 + 𝔼[ 𝔼 𝑋 2] linearity of expectation.

= 𝔼 𝑋2 − 2𝔼 𝑋 𝔼[𝑋] + 𝔼[ 𝔼 𝑋 2] linearity of expectation.

= 𝔼 𝑋2 − 2𝔼 𝑋 𝔼[𝑋] + 𝔼 𝑋 2 expectation of a constant is the constant

= 𝔼 𝑋2 − 2 𝔼 𝑋 2 + 𝔼 𝑋 2

= 𝔼 𝑋2 − 𝔼 𝑋 2

So Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2.



Variance of a die

Let 𝑋 be the result of rolling a fair die.

Var X = 𝔼 𝑋 − 𝔼 𝑋 2 = 𝔼[ 𝑋 − 3.5 2]

=
1

6
1 − 3.5 2 +

1

6
2 − 3.5 2 +

1

6
3 − 3.5 2 +

1

6
4 − 3.5 2 +

1

6
5 − 3.5 2 +

1

6
6 − 3.5 2

=
35

12
≈ 2.92.

Or 𝔼 𝑋2 − 𝐸 𝑋 2 = σ𝑘=1
6 1

6
⋅ 𝑘2 − 3.52 =

91

6
− 3.52 ≈ 2.92



Variance of 𝑛 Coin Flips

Flip a coin 𝑛 times, where it comes up heads with probability 𝑝 each time 
(independently). Let 𝑋 be the total number of heads.

We saw last time 𝔼 𝑋 = 𝑛𝑝.

𝑋𝑖 = ቊ
1 if flip 𝑖 is heads
0 otherwise

𝔼 𝑋 = 𝔼[σ𝑖=1
𝑛 𝑋𝑖] = σ𝑖=1

𝑛 𝔼 𝑋𝑖 = σ𝑖=1
𝑛 𝑝 = 𝑛𝑝.



Variance of 𝑛 Coin Flips

Flip a coin 𝑛 times, where it comes up heads with probability 𝑝 each time 
(independently). Let 𝑋 be the total number of heads.

What about Var(𝑋)

𝔼 𝑋 − 𝔼 𝑋 2 = σ𝑘∈Ω𝑋
ℙ(𝑋 = 𝑘) 𝑘 − 𝑛𝑝 2

= σ𝑘=0
𝑛 𝑛

𝑘
⋅ 𝑝𝑘 1 − 𝑝 𝑛−𝑘 ⋅ 𝑘 − 𝑛𝑝 2

Algebra time?



Variance Adds If Independent

Are the 𝑋𝑖 independent? Yes! 

In this problem 𝑋𝑖 is independent of 𝑋𝑗 for 𝑖 ≠ 𝑗 where

𝑋𝑖 = ቊ
1 if flip 𝑖 was heads
0 otherwise

If 𝑿 and 𝒀 are independent then 

𝐕𝐚𝐫 𝑿 + 𝒀 = 𝐕𝐚𝐫 𝑿 + 𝐕𝐚𝐫(𝒀)



Variance Adds If Independent

Var 𝑋 = Var(σ𝑖=1
𝑛 𝑋𝑖) = σ𝑖=1

𝑛 Var(𝑋𝑖)

What’s the Var(𝑋𝑖)?

𝑉𝑎𝑟 𝑋𝑖 = 𝔼 𝑋𝑖
2 − 𝔼 𝑋𝑖

2

               = 𝔼 𝑋𝑖 − 𝑝2

               = 𝑝 − 𝑝2

               = 𝑝(1 − 𝑝) 



Variance Adds If Independent

Var 𝑋 = Var(σ𝑖=1
𝑛 𝑋𝑖) = σ𝑖=1

𝑛 Var(𝑋𝑖)

What’s the Var(𝑋𝑖)?

𝑝(1 − 𝑝). 

Var 𝑋 = σ𝑖=1
𝑛 𝑝 1 − 𝑝 = 𝑛𝑝(1 − 𝑝).



Expectation and Variance aren’t everything

Alright, so expectation and variance is everything right?

No!

A PMF or CDF *does* fully describe a random variable. 
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PMF 1 with E=3/2, Var=3/4

Flip a fair coin 3 times indep. Count heads. Flip a biased coin (prob heads=2/3) until 

heads. Count flips.

…



Useful Facts



Make a prediction

How should Var 𝑋 + 𝑐  relate to 𝑉𝑎𝑟(𝑋) if 𝑐 is a constant?

How should Var(aX) relate to Var(𝑋) is 𝑎 is a constant?



Facts About Variance

Var 𝑋 + 𝑐 = Var(𝑋)

Proof:

Var 𝑋 + 𝑐 = 𝔼 𝑋 + 𝑐 2 − 𝔼 𝑋 + 𝑐 2

= 𝔼 𝑋2 + 𝔼 2𝑋𝑐 + 𝔼 𝑐2 − 𝔼 𝑋 + 𝑐 2

= 𝔼 𝑋2 + 2𝑐𝔼 𝑋 + 𝑐2 − 𝔼 𝑋 2 − 2𝑐𝔼 𝑋 − 𝑐2

= 𝔼 𝑋2 − 𝔼 𝑋 2

= Var(𝑋)

Intuition: Adding a constant just shifts the distribution – the spread says the same



Facts about Variance

Var 𝑎𝑋 =



Facts about Variance

Var 𝑎𝑋 = 𝑎2Var(𝑋)

= 𝔼 𝑎𝑋 2 − (𝔼 𝑎𝑋 )2

= 𝑎2𝔼 𝑋2 − 𝑎𝔼 𝑋 2

= 𝑎2𝔼 𝑋2 − 𝑎2𝔼 𝑋 2

= 𝑎2 𝔼 𝑋2 − 𝔼 𝑋 2

Intuition: Multiplying by a positive constant makes it more spread out



Summary of Expectation and Variance 

Expectation (“on average”)

𝔼 𝑋 = ෍

𝑘∈𝛺𝑋

𝑘 ⋅ ℙ(𝑋 = 𝑘)

> 𝔼 𝑔(𝑋) = σ𝑘∈𝛺𝑋
𝑔(𝑘) ⋅ ℙ(𝑋 = 𝑘)

Linearity of Expectation (LoE)

𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌] (always true)

Shifting and Scaling:

𝔼 𝑎𝑋 + 𝑏 = 𝑎𝔼 𝑋 + 𝑏

If 𝑋 and 𝑌 are independent: 
𝔼 𝑿 ⋅ 𝒀 = 𝔼 𝑿 𝔼 𝒀

Variance (“how spread out”)

Var 𝑋 = 𝔼[𝑋2] − 𝔼 𝑋 2

Linearity of Variance

only if 𝑋 and 𝑌 are independent

Shifting and Scaling:

Var 𝑎𝑋 + 𝑏 = 𝑎2Var(𝑋)

If 𝑋 and 𝑌 are independent: 
Var 𝑋 + 𝑌 = Var 𝑋 + Var(𝑌)



Discrete Random Variable Zoo



Discrete Random Variable Zoo

There are common patterns of experiments:

> Flip a [fair/unfair] coin [blah] times and count the number of heads.

> Flip a [fair/unfair] coin until the first time that you see a heads

> Draw a uniformly random element from [set]

> Define an indicator random variable for [event]

…

Instead of calculating the support, PMF, CDF, expectation, variance 
every time, why not calculate it once and look it up every time? 



for example… 

E.g.

• the number of coin tosses till we get the first heads

• the number of games we need to play till we first win

• the number of dice rolls till the first 6

all follow the same format as,

• the number of trials till we get the first success

The discrete zoo defines some common patterns and gives us the PMF, 

expectation, and variance, so we don’t have to compute it every time! 



What’s our goal?

Your goal is NOT to memorize these facts (it’ll be convenient to 
memorize some of them, but don’t waste time making flash cards).
Everything is on Wikipedia anyway. Everyone checks Wikipedia when they forget 
these.



What’s our goal?

Your goal is NOT to memorize these facts (it’ll be convenient to 
memorize some of them, but don’t waste time making flash cards).
Everything is on Wikipedia anyway. Everyone checks Wikipedia when they forget 
these.

While learning about this zoo, we will also get the chance too: 

0. Introduce one new distribution we haven’t seen at all (next time).

1. Practice expectation, variance, etc. for ones we have gotten hints of.

2. Review the first half of the course with some probability calculations.



Zoo! 

𝒑𝑿 𝒌 =
𝟏

𝒃 − 𝒂 + 𝟏

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝒃 − 𝒂 + 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒑𝑿 𝒌 = 𝟏 − 𝒑 𝒌−𝟏𝒑

𝔼 𝑿 =
𝟏

𝒑

𝐕𝐚𝐫 𝑿 =
𝟏 − 𝒑

𝒑𝟐

𝑿~𝐆𝐞𝐨(𝒑)

𝒑𝑿 𝟎 = 𝟏 − 𝒑;
𝒑𝑿(𝟏) = 𝒑

𝔼 𝑿 = 𝒑

𝐕𝐚𝐫 𝑿 = 𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐞𝐫(𝒑)

𝒑𝑿 𝒌 =
𝒌 − 𝟏

𝒓 − 𝟏
𝒑𝒓 𝟏 − 𝒑 𝒌−𝒓

𝔼 𝑿 =
𝒓

𝒑

𝐕𝐚𝐫 𝑿 =
𝒓(𝟏 − 𝒑)

𝒑𝟐

𝑿~𝐍𝐞𝐠𝐁𝐢𝐧(𝒓, 𝒑)

𝒑𝑿 𝒌 =
𝒏

𝒌
𝒑𝒌 𝟏 − 𝒑 𝒏−𝒌

𝔼 𝑿 = 𝒏𝒑

𝐕𝐚𝐫 𝑿 = 𝒏𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐢𝐧(𝒏, 𝒑)

𝒑𝑿 𝒌 =

𝑲
𝒌

𝑵−𝑲
𝒏−𝒌

𝑵
𝒏

𝔼 𝑿 = 𝒏
𝑲

𝑵

𝐕𝐚𝐫 𝑿 =
𝑲(𝑵 − 𝑲)(𝑵 − 𝒏)

𝑵𝟐(𝑵 − 𝟏)

𝑿~𝐇𝐲𝐩𝐆𝐞𝐨(𝑵, 𝑲, 𝒏)

𝒑𝑿 𝒌 =
𝝀𝒌𝒆−𝝀

𝒌!

𝔼 𝑿 = 𝝀

𝐕𝐚𝐫 𝑿 = 𝝀

𝑿~𝐏𝐨𝐢(𝝀)



Scenario: Uniform

You want an integer in some range, with each integer equally likely.

Familiar example:

Outcome of rolling a fair die (or draw a random integer from 1,…,n)
equally likely to be an integer between 1 and 6



Discrete Uniform Distribution

𝑋~Unif(𝑎, 𝑏)

𝑋 is a uniformly random integer between 𝑎 and 𝑏 (inclusive)

Parameter 𝑎 is the minimum value in the support, 𝑏 is the maximum 
value in the support.

PMF: 𝑝𝑋 𝑘 =
1

𝑏−𝑎+1
 for 𝑘 ∈ ℤ, 𝑎 ≤ 𝑘 ≤ 𝑏

CDF: 𝐹𝑋 𝑘 =
𝑘−𝑎+1

𝑏−𝑎+1
 for 𝑘 ∈ ℤ, 𝑎 ≤ 𝑘 ≤ 𝑏.

Expectation: 𝔼 𝑋 =
𝑎+𝑏

2
 

Variance: Var 𝑋 =
(𝑏−𝑎)(𝑏−𝑎+2)

12



Situation: Bernoulli

Do I get a success in one trial with probability 𝒑 of “success”?

Familiar examples:

You flip a biased coin (once) and want to record whether its heads.

An indicator random variable that is either 1 or 0



Bernoulli Distribution

𝑋~Ber(𝑝)

𝑋 is the indicator random variable that the trial was a success.

Parameter 𝑝 is probability of success on the trial.

PMF: 𝑝𝑋 0 = 1 − 𝑝, 𝑝𝑋 1 = 𝑝

CDF: 𝐹𝑋 𝑘 = ቐ
0 if 𝑘 < 0
1 − 𝑝 if 0 ≤ 𝑘 < 1
1 if 𝑘 ≥ 1

Expectation: 𝔼 𝑋 = 𝑝

Variance: Var 𝑋 = 𝑝(1 − 𝑝)



Bernoulli Distribution Examples

Did a particular bit get written correctly on the device?

Did you guess right on a multiple-choice test?

Did a server in a cluster fail?

Did a disk drive crash?

Did buying a particular share of a stock pay off?

Did a user like or dislike a YouTube video? (Back in ye olden days, at least)

Does a user click an ad?

In each of these, we find the probability of success on a trial, define a RV as an indicator for 

whether the event occurred, say the RV follows a bernoulli distribution with relevant and 

we have the PMF, E[X] and Var(X)!



Situation: Binomial

How many success did you see in 𝒏 independent trials, where each trial 
has probability 𝒑 of success?

Familiar example:

You flip a coin 𝑛 times independently, each with a probability 𝑝 of 
coming up heads. How many heads are there?



Binomial Distribution

𝑋~Bin(𝑛, 𝑝)

𝑋 is the number of successes across 𝑛 independent trials.

𝑛 is the number of independent trials. 
𝑝 is the probability of success for one trial.

PMF: 𝑝𝑋 𝑘 = 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 for 𝑘 ∈ {0,1, … , 𝑛}

CDF: 𝐹𝑋 is ugly.

Expectation: 𝔼 𝑋 = 𝑛𝑝

Variance: Var 𝑋 = 𝑛𝑝(1 − 𝑝)



Binomial Distribution Examples

How many bits were written correctly on the device?

How many questions did you guess right on a multiple-choice test?

How many servers in a cluster failed?

How many keys went to one bucket in a hash table?



Example: Unpopular Donuts

A donut shop serves 50 people a day and serves a mango chili lime 
donut. The probability that a customer chooses this donut is 0.2. All 
customers’ choices are independent of each other. 

What is the probability that exactly 10 people choose this flavor? 

What is the probability that at least 3 people choose this flavor? 
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Example: Unpopular Donuts

A donut shop serves 50 people a day and serves a mango chili lime 
donut. The probability that a customer chooses this donut is 0.2. All 
customers’ choices are independent of each other. 

What is the probability that exactly 10 people choose this flavor? 

𝑋~ number of people who choose this flavor. 𝑋~Bin(50, 0.2)

ℙ 𝑋 = 10 = 50
10

0.210 1 − 0.2 50−10

What is the probability that at least 3 people choose this flavor? 

ℙ 𝑋 ≥ 3 = 1 − ℙ 𝑋 < 3 = 1 − (ℙ 𝑋 = 0 + ℙ 𝑋 = 1 + ℙ 𝑋 = 2 )
                  = 1 − ( 50

0
0.20(0.8)50−0+ 50

1
0.21 0.8 50−1 + 50

2
0.22 0.8 50−2)



Situation: Geometric

How many independent trials are needed until the first success?

Familiar Example:

You flip a coin (which comes up heads with probability 𝑝) until you get a 
heads. How many flips did you need?



Geometric Distribution

𝑋~Geo(𝑝)

𝑋 is the number of trials needed to see the first success.

𝑝 is the probability of success for one trial.

PMF: 𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝 for 𝑘 ∈ {1,2,3, … }

𝐹𝑋 𝑘 = 1 − 1 − 𝑝 𝑘 for 𝑘 ∈ ℕ

𝔼 𝑋 =
1

p

Var 𝑋 =
1−𝑝

𝑝2



Geometric Distribution Examples

How many bits can we write before one is incorrect?

How many questions do you have to answer until you get one right?

How many times can you run an experiment until it fails for the first time?



Geometric: Analysis

Both the expectation and variance are new to us. 

The derivations of both are uninformative
Every derivation I’ve ever seen has wild algebra tricks.



Geometric: Expectation

𝔼 𝑋 = σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1𝑝

= 𝑝 σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1 = 𝑝 ⋅

1

𝑝2 =
1

𝑝
.

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
2−𝑝

𝑝2 −
1

𝑝2 =
1−𝑝

𝑝2

Intuition: for small 𝑝 lots of variance 

(might have to wait a long time, and it’s 

variable)

For large 𝑝 very little variance (for 𝑝 = 1 

there’s no variation at all!) 

Intuition: Smaller 𝑝 means longer wait



Geometric Property

Geometric random variables are called “memoryless”

Suppose you’re flipping coins (independently) until you see a heads.

The first three came up tails. 

How many flips are left until you see the first heads?

It’s another independent copy of the original!

The coin “forgot” it already came up tails 3 times.



Formally…

Let 𝑋 be the number of flips needed, 𝑌 be the flips after the third.

ℙ 𝑌 = 𝑘 𝑋 ≥ 3) =? 

…

Which is 𝑝𝑋(𝑘).



Formally…

Let 𝑋 be the number of flips needed, 𝑌 be the flips after the third.

ℙ 𝑌 = 𝑘 𝑋 ≥ 3) = ℙ(𝑌 = 𝑘 ∩ 𝑋 ≥ 3)/ℙ(𝑋 ≥ 3)

1−𝑝 𝑘+3−1𝑝

1−𝑝 3

= 1 − 𝑝 𝑘−1𝑝

Which is 𝑝𝑋(𝑘).



Summary

Today we covered the following random variables from the zoo: 

• Bernoulli: Whether there is success in one trial
  Ber(𝑝) is 1 with probability 𝒑 and 0 otherwise

• Binomial: Number of successes in 𝑛 independent trials
  Bin 𝑛, 𝑝  - 𝑛 independent trials, probability 𝑝 of success on each trial

• Geometric: Number of trials until the first success
  Geo(𝑝) – probability 𝑝 of success on a single trial

• Uniform: Every integer between 𝑎 and 𝑏 are equally likely
  Un𝑖𝑓 𝑎, 𝑏

More on Friday ☺ 
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