variance + discrete zoo IECTURE 10

- TODOS FOR WEEK 4
\square Concept check $8 \square 9 \square 10$
\square HW3 due on Wed (7/11) \square Coding on Fri. (7/13)
\square Read midterm information
\square Practice for midterm, review session on Friday
\square Attend/participate in section on Thursday

MORE PROPERTIES OF INDEPENDENCE

$\operatorname{Var}(X+c)=\operatorname{Var}(X)$ shifting
 $\operatorname{Var}(\mathbf{a X})=\mathbf{a}^{2} \operatorname{Var}(X)$ scaling

[^0]
$Z 00$ OF DISCRETE RANDOM VARIABIES

THE DiSCRETE $2 O 0$ DEFiNES SOME COMMON PATTERNS AND GiVES US THE PMF, expectation, and variance, so we dontt have to compute it every time!

UNIFORM DISTRIBUTION

x

You want an integer in some range, with each integer equally likely.
$X \sim \operatorname{Unif}(a, b)$
PMF: $p_{X}(k)=\frac{1}{b-a+1}$ for $k \in \mathbb{Z}, a \leq k \leq b$
CDF: $F_{X}(k)=\frac{k-a+1}{b-a+1}$ for $k \in \mathbb{Z}, a \leq k \leq b$.
Expectation: $\mathbb{E}[X]=\frac{a+b}{2}$
Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Do I get a success in one trial with probability p of "success"?
$X \sim \operatorname{Ber}(p)$
X is the indicator random variable that the trial was a success.
Parameter p is probability of success on the trial.
PMF: $p_{X}(0)=1-p, p_{X}(1)=p$
CDF: $F_{X}(k)=\left\{\begin{array}{lr}0 & \text { if } k<0 \\ 1-p & \text { if } 0 \leq k<1 \\ 1 & \text { if } k \geq 1\end{array}\right.$
Expectation: $\mathbb{E}[X]=p$
Variance: $\operatorname{Var}(X)=p(1-p)$

BINOMIAL DISTRIBUTION

How many success did you see in n independent trials, where each trial has probability p of success?

```
X~\operatorname{Bin}(n,p)
X is the number of successes across n independent trials.
n}\mathrm{ is the number of independent trials.
p is the probability of success for one trial.
PMF: }\mp@subsup{p}{X}{}(k)=(\begin{array}{l}{n}\\{k}\end{array})\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k}\mathrm{ for }k\in{0,1,\ldots,n
CDF: F}\mp@subsup{F}{X}{}\mathrm{ is ugly.
Expectation: \mathbb{E}[X]=np
Variance: }\operatorname{Var}(X)=np(1-p
```


[^0]:

