# linearity of expectation Lective 9 

$\bullet$ TODOS FOR WEEK 4
$\square$ Concept check $8 \square 9 \square 10$
$\square$ HW3 due on Wed（7／11）$\square$ coding on Fri．（7／13）
$\square$ Read midterm information
$\square$ Practice for midterm，review session on Friday
$\square$ Attend／participate in section on Thursday
Concept check $8 \square 9 \square 10$
Read midterm information

## $\bullet \bullet$ INDEPENDENCE OF RANDOM VARIABLES

＂knowing the value of one RV doesn＇t tell us anything about what the value of the other might be＂
$X$ and $Y$ are independent if for all $k, \ell$
$\mathbb{P}(X=k, Y=\ell)=\mathbb{P}(X=k) \mathbb{P}(Y=\ell)$
Are $\mathrm{S}=$＂the sum of two dice＂and $\mathrm{R}=$＂the value of the red die＂independent？
$X \sim$＂the \＃of heads in the first $n$ flips．＂$Y \sim$＂the \＃of heads in the last $n$ flips．＂Are $X$ and $Y$ independent？


> MUTUAL INDEPENDENCE OF RANDOM VARIABLES $x_{1}, X_{2}, \ldots, X_{n}$ are mutually independent if for all $x_{1}, x_{2}, \ldots, x_{n}$ $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \mathbb{P}\left(X_{2}=x_{2}\right) \cdots \mathbb{P}\left(X_{n}=x_{n}\right)$

## MORE OF EXPECTATION！

## Expectation formulas：

$$
\mathbb{E}[\boldsymbol{X}]=\sum_{\boldsymbol{k} \in \Omega_{X}} \boldsymbol{k} \cdot \mathbb{P}(\boldsymbol{X}=\boldsymbol{k}) \quad \mathbb{E}[\boldsymbol{X}]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

－-
EXPECTATION OF A FUNCTION OF A RANDOM VARIABIE
Functions on random variables are still random variables
e．g．，
$\mathbb{E}[\boldsymbol{g}(\boldsymbol{X})]=\sum_{\boldsymbol{k} \in \Omega_{X}} \boldsymbol{g}(\boldsymbol{k}) \cdot \mathbb{P}(\boldsymbol{X}=\boldsymbol{k}) \begin{aligned} & \text { The probabilities are the same，but we apply } \\ & \text { function on the values in the support of } X\end{aligned}$

$$
\begin{array}{ll}
\mathrm{p}_{X}(k)=\left\{\begin{array}{rr}
0.5 & k=1 \\
0.5 & k=-1 \\
0 & \text { otherwise }
\end{array}\right. & \mathrm{p}_{X^{2}}(k)= \\
\mathrm{E}[\mathrm{X}]=--------- & \mathrm{E}[\mathrm{X} \wedge 2]=
\end{array}
$$

The expected value of a sum of random variables is the sum of their individual expectations $\star E[X+Y]=E[X]+E[Y] \quad \star E[X 1+X 2+\ldots+X n]=E[X 1]+E[X 2]+\ldots+E[X n] \quad \star E[a X+b Y+c]=a E[X]+b E[Y]+c$

You catch $X$ fish, with $\mathbb{E}[X]=3$. Your friend catches $Y$ fish, with $\mathbb{E}[Y]=7$.
II How many fish do both of you bring on an average day?
l) E [ $\qquad$ ] =
You can sell each for $\$ 10$, but you need $\$ 15$ for expenses. What is your average profit?
) E $\square$ ] =



Oftentimes, the random variables we want to break X down into are indicator random variables

$$
X=\left\{\begin{array}{lr}
1 & \text { if event A occurs } \\
0 & \text { otherwise }
\end{array} \quad p_{X}(k)=\left\{\begin{array}{ll}
\mathbb{P}(A) & \text { if } k=1 \\
1-\mathbb{P}(A) \text { if } k=0 \\
0 & \text { otherwise }
\end{array} \quad \begin{array}{l}
\mathbb{E}[X] \\
=1 \cdot p_{X}(1)+0 \cdot p_{X}(0) \\
=p_{X}(1)=\mathbb{P}(A)
\end{array}\right.\right.
$$

general process for using loe when we have more complex situations
, Decompose: Decompose the random variable into sum of simple RVs: $\mathrm{X}=\mathrm{X1}+\mathrm{X} 2+\ldots+\mathrm{Xn}$
, LOE: Apply Linearity of Expectation $\mathbb{-}-\mathrm{E}[\mathrm{X}]=\mathrm{E}[\mathrm{XI}]+\mathrm{E}[\mathrm{X} 2]+\ldots+\mathrm{E}[\mathrm{Xn}]$
, Conquer: Compute the expectation of each Xi

