random variables IECTURE 8

RANDOM VARIABLES: assign quantitative values to outcomes of a random experiment.
> RANGE/SUPPORT: Ω_{x} is set of possible values X can be
 > EXPECTATION: Average of values on the support, weighted on the probabilities X takes on each , VARIANCE: Coming soon!

RANDOM VARIABIES

RANDOM VARIABLES

Summarizes Important information from outcomes from a sample space.
Ω is set of
possible
outcomes
$\underset{\omega \in \Omega}{\text { Outcome }} \rightarrow X \rightarrow \underset{\text { value }}{\text { Quantitative }}$ e.g.,

Notation notes:

> Use a capital letter to denote a random variables
> $\mathrm{X}=\mathrm{k}$ represents the set of outcomes that the random variable X assigns the value k
DESCRIBING RANDOM VARIABIES

SUPPORT - WHAT VALUES CAN THE RANDOM VARIABLES TAKE?

Support/range is the set of values X could possibly take
|| Random experiment. Roll a fair red and fair blue dice
D (difference of red and blue dice) has support \qquad
S (sum of the two dice) has support \qquad
\mathbf{M} (max of the two dice) has support \qquad
$\underset{\omega \in \Omega}{\text { Outcome }}$ $\rightarrow X \rightarrow \mathbf{Q}$ value

PROBABILITY MASS FUNCTION (PMF)

The probability of X being each of the possible values - $p_{X}(k)=P(X=k)$

[^0]$X=0, X=1, X=2$, etc. are all events that partition the sample space
$\sum_{k \in \Omega_{x}} p_{X}(k)=1$

CUMULATIUE DISTRIBUTION FUNCTION (CDF)

The probability of X being less than or equal to a value $k-F_{-} X(k)=P(X<=k)$

EXPECTATION

The weighted average over all the values in the support X, weighted on the probability of each $\mathbb{E}[\boldsymbol{X}]=\sum_{\boldsymbol{k} \in \Omega_{\mathrm{X}}} \boldsymbol{k} \cdot \mathbb{P}(\boldsymbol{X}=\boldsymbol{k})$

Flip a fair coin twice (independently). What is the expected number of heads we see?

1. Find the PMF for X
2. Compute $E[X]$

A die shows a 6 with probability $1 / 3$, and $1, \ldots, 5$ with probability $2 / 15$ each. X is value of the die. What is $E[X]$?
l. Find the PMF for X
2. Compute $E[X]$

Let X be the result shown on a fair die. What is $\mathrm{E}[\mathrm{X}]$?

1. Find the PMF for X
2. Compute $E[X]$

Let Y be the sum of two (independent) fair die rolls. What is $E[Y]$?
$\begin{array}{ll}\text { l. Find the PMF for } X & \text { 2. Compute } E[X]\end{array}$

[^0]: T ~ number of 2's when we roll a red and blue dice
 PMF for $T: P(X=k)=p_{\mathbf{x}}(\mathbf{k})=$

