independence + chain rule IECTURE 6

[^0]INDEPENDENCE

-•

INDEPENDENCE OF 2 EVENTS

"Knowing A doesn't tell us anything about whether B happened" "Knowing B doesn't tell us anything about whether A happened"

If $\mathbb{P}(A)$ and $\mathbb{P}(B)$ are $>\mathbf{0}$, the events A and B are independent if

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A) \Leftrightarrow \mathbb{P}(B \mid A)=\mathbb{P}(B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

If one of $\mathbb{P}(A)$ or $\mathbb{P}(B)$ is $\mathbf{0}$, the events A and B are independent
because $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)=0$

We flip a fair coin three times. Each flip is independent.
> Is $E=\{H H H\}$ independent of $F=$ "at most two heads"?
> Are $A=$ "the first flip is heads" and $B=" t h e ~ s e c o n d ~ f l i p ~ i s ~ t a i l s " ~ i n d e p e n d e n t ? ~ ? ~$

ANALYZING INDEPENDENCE OF 3 OR MORE EVENTS

PAIRWISE INDEPENDENCE (CHECK INDEPENDENCE IN EVERY PAIR)

Events $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise independent if

$$
\mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}} \cap \boldsymbol{A}_{\boldsymbol{j}}\right)=\mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}}\right) \cdot \mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{j}}\right) \text { for all } \boldsymbol{i}, \boldsymbol{j}
$$

MUTUAL INDEPENDENCE (CHECK INDEPENDENCE IN EVERY SUBSET)

Events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent if $\mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}_{1}} \cap \boldsymbol{A}_{\boldsymbol{i}_{2}} \cap \cdots \cap \boldsymbol{A}_{\boldsymbol{i}_{\boldsymbol{k}}}\right)=\mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}_{1}}\right) \cdot \mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}_{2}}\right) \cdots \mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}_{\boldsymbol{k}}}\right)$ for every subset $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \ldots, \boldsymbol{i}_{\boldsymbol{k}}\right\}$ of $\{1,2, \ldots, n\}$.

Roll two fair dice (one red one blue) independently. $R=" r e d$ die is 3 ", $B="$ blue die is 5 ", $S="$ sum is 7"

Are these events pairwise independent? (check every pair of events)

Roll a fair 8-sided die.
$A=\{1,2,3,4\}, B=\{2,4,6,8\}, C=\{2,3,5,7\}$
Are these events pairwise independent? (check every pair of events)

Are these events mutually independent? (check every subset of events)
Are these events mutually independent? (check every subset of events)

Assume alarms from the sensors are mutually independent. Probability each sensor triggers is: $P(A)=0.3, P(B)=0.4, P(C)=0.5$

What is the probability that all of the sensors go off?

What is the probability that at least one of the sensors go off?

Two events A, B are conditionally independent on C if $\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \cdot \mathbb{P}(B \mid C)$
"after we know C, knowing A doesn't give us any additional information about B"
"in this new "restricted sample space" after conditioning on C, A and B are independent"

Coin A is fair, coin B is heads with probability 0.85 .

If the die is odd flip A twice (independently); otherwise flip B twice (independently) Cl ~"the first flip is heads", C2 ~ "the second flip is heads", O ~"the die was odd"

Are Cl and C 2 independent?

Are Cl and C 2 conditionally independent on O ?

\| Let A be the event "The top card is a $K \vee$ " ILet B be the event "the second card is a J Let C be the event "the third card is a 5 What is $P(A \cap B \cap C)$?

Chain Rule: The probability of one of the "nodes" is product of the probabilities of the steps that led to it: $\mathbb{P}(A \cap H \cap X)=\mathbb{P}(A) \mathbb{P}(H \mid A) \mathbb{P}(X \mid A \cap H)$

LOTP: Sum up probabilities of intersection with other events partitioning the sample space $\mathbb{P}(H)=\mathbb{P}(A \cap H)+\mathbb{P}(B \cap H)+\ldots=\mathbb{P}(A) \mathbb{P}(H \mid A)+\mathbb{P}(B) \mathbb{P}(H \mid B)$

[^0]: *INDEPENDENCE OF TWO EVENTS (IF PROB. >0): $\mathbb{P}(A \mid B)=\mathbb{P}(A) \Leftrightarrow \mathbb{P}(B \mid A)=\mathbb{P}(B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$ PAIRWISE INDEPENDENCE: Every pair of 2 events is independent
 MUTUAL INDEPENDENCE: For every subset of events, $\mathrm{P}(\mathrm{A} \mathrm{n} \mathrm{B} \mathrm{n} . .)=.\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) .$.
 CONDITIONAL INDPENDENCE: A and B conditionally independent on C if $\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \cdot \mathbb{P}(B \mid C)$
 CHAIN RULE: $\mathbb{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2} \mid A_{1}\right) \ldots \mathbb{P}\left(A_{n-1} \mid A_{1} \cap \cdots \cap A_{n-2}\right) \cdot \mathbb{P}\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right)$

