onditional	probability
•••••••	

LECTURE 5

P(A B) is the probability that the event A occurs cor	nditioning on aiven that Boccurred
r (Alb) is the probability that the event A occurs cor	alloring on given that boccarred
	$\mathbb{P}(\boldsymbol{A} \cap \boldsymbol{B})$

DEFINITION OF CONDITIONAL PROBABILITY: $\mathbb{P}(A|B) = \mathbb{P}(\mathbf{B})$

BAYES' RULE: $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$

LAW OF TOTAL PROBABILITY (LOTP): $\mathbb{P}(A) = \sum_{a \parallel i} \mathbb{P}(A \cap E_i) = \sum_{a \parallel i} \mathbb{P}(E_i | A_i) \mathbb{P}(A_i)$

There are about 50 people in this class. What is the probability that at least 2 of us share a birthday? Assume there are exactly 365 possible birthdays, and each possibility is equally likely.

Sample Space:

Probability Measure:

Event.

Probability.

Takeaways/Reminders:

• If you're dealing with a situation where you may be able to use a uniform probability space, make sure to set up the sample space in a way that every outcome is equally likely.

•Try not overcomplicate the sample space - only include the information that you need in it. •

•When you define an event, make sure it is a subset of the sample space!

CONDITIONAL PROBAB

FINDING PROBABILITIES WHEN WE'RE GIVEN SOME PARTIAL INFORMATION ABOUT THE OUTCOME

DEFINITION OF CONDITIONAL PROBABILITY

Х

For an event B, with P(B)>0, the "Probability of A conditioned on B" is: $\mathbb{P}(A|B) = -$

 $\mathbb{P}(A \cap B)$ $\mathbb{P}(\mathbf{B})$

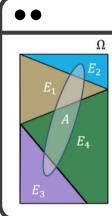
	D2=1	D2=2	D2=3	D2=4	D2=5	D2=6	A ~ Red die (
D1=1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1.6)	B ~ Sum is 7
D1=2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	C ~ Sum is 9 P(A B) = P(A C) = P(B A) =
D1=3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	
D1=4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	
D1=5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	
D1=6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	
01-0	(0,1)	(0,2)	(0,5)	(0,4)	(0,5)	(0,0)	F(D A) =

DOES DIRECTION MATTER? IS P(A|B)=P(B|A)?

WONKA BARS 🍫 Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars. **P(**) = 0.001 You want to get a golden ticket. You could buy a 1000-or-so of the bars until you find one, but that's expensive...you've got a better idea! You have a test - a very precise scale you've bought. If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the time. **P(**) = 0.999 Р() = 0.01If the bar you weigh does not have a golden ticket, the scale will alert you 1% of the time. **P(**)=? If you pick up a bar and it alerts, what is the probability you have a golden ticket?

BAYES' RULE

 $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$



.

Events E1, E2, ..., En partition a sample space if (1) they don't overlap and (2) their union is the sample space

$$\mathbb{P}(A) = \sum_{\text{all } i} \mathbb{P}(A \cap E_i) = \sum_{\text{all } i} \mathbb{P}(E_i | A_i) \mathbb{P}(A_i)$$

So.... P(A) =

OTHER TAKEAWAYS...

After you condition on an event, what remains is a probability space.

(Ω ,P) is a valid probability space after conditioning on A, (A,P(\cdot |A)) is valid probability space

 $\sum_{\omega \in A} \mathbb{P}(\omega|A) \stackrel{'}{=} 1$ $\mathbb{P}(\overline{E}|A) = 1 - \mathbb{P}(E|A)$

X