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Uniform Probability Spaces



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Ω = { 𝑥, 𝑦 : 𝑥 and 𝑦 are different cards }

Probability Measure: uniform measure ℙ 𝜔 =
1

52⋅51

Event: all pairs with equal values

Probability: 
13⋅𝑃 4,2

52⋅51



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability: 
13⋅𝑃 4,2 ⋅50!

52!



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability: 
13⋅𝑃 4,2 ⋅50 ∗49 ∗48 ∗⋯.∗2 ∗1

52 ∗ 51 ∗ 50 ∗49 ∗48 ∗ …∗2∗1



Takeaway

There’s often information you “don’t need” in your sample space.

It won’t give you the wrong answer.

But it sometimes makes for extra work/a harder counting problem,

Good indication: you cancelled A LOT of stuff that was common in the 
numerator and denominator.



Few notes about events and samples spaces

• If you’re dealing with a situation where you may be able to use a  
uniform probability space, make sure to set up the sample space in a 
way that every outcome is equally likely.

•Try not overcomplicate the sample space – only include the information 
that you need in it. 

•When you define an event, make sure it is a subset of the sample space!
e.g., if order matters in the sample space, it should also matter in the event space



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if ?

ℙ 𝐸 = 1 if and only if ?



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if an event can’t happen.

ℙ 𝐸 = 1 if and only if an event is guaranteed (every outcome outside 
𝐸 has probability 0). 



Birthday Paradox



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

We know from the pigeonhole principle that if there are >365 people 
in the group, there will certainly be at least 2 people that share the 
same birthday. But what’s the probability of this happening if there are 
only 50 people?



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

What do you think this probability is closest to? 

A) 0.001

B) 0.5

C) 0.99

D) 1 Fill out the poll everywhere pollev.com/cse312 

and login with your UW identity



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

Sample Space: 

Probability Measure:

Event:

Probability:



Sharing Birthdays
There are about 50 people in this class. What is the probability that                   
at least 2 of us share a birthday? Assume that there are exactly 365 possible 
birthdays, and each possibility is equally likely.

Sample Space: Set of assignments of birthdays to people. Ω = 36550

Probability Measure: Uniform probability measure. ℙ 𝜔 =
1

36550 for 𝜔 ∈ Ω

Event: Let 𝐸 be the event that at least 2 people share a birthday.

Probability: ℙ 𝐸 = 1 − ℙ ത𝐸 . ത𝐸 is the event that no one shares a birthday.

ℙ ത𝐸 =
ത𝐸

Ω
=

𝑃(365,50)

36550  . 

We use a permutation for ത𝐸  because birthdays are “selected” without replacement, (all have 
different birthdays) and order matters (my birthday is different from your birthday, etc.)

ℙ 𝐸 = 1 −
𝑃 365,50

36550
≈ 0.97



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

ℙ 𝐸 = 1 −
𝑃 365,50

36550
≈ 0.97

This is pretty high! So almost definitely, two of us here share the same 
birthday 



That’s very likely! Why?

It turns out that human brains find thinking about probabilities difficult!

Our brains are a bit selfish! When it comes to the probability that 

someone shares our birthday, that would be 
1

365
 - not quite so likely.

But if we’re looking at any pair’s birthday in a group of 𝑛 people, there 
are 𝑛

2
 pairs of people, which grows quadratically with 𝑛. So the 

probability of at least one pair of people sharing a birthday approaches 
1 pretty fast! 



Summary

• Probability allows us to assign a value between 0 and 1 to outcomes 

• A random experiment is any process where the outcome is not known 
for certain

• The sample space of an experiment is the set of all possible outcomes

• An event is a subset of the sample space (some set of outcomes)

• The probability space is the pair (Ω, ℙ) where Ω is the sample space and 
ℙ is the probability measure (a function that assigns probabilities to 
every outcome 𝜔 in the sample space) 
• A uniform probability space is a common type of probability space where every 
outcome is equally likely. To find the probability of an event in a uniform probability 
space, we find the size of the event divided by the size of the sample space



Outline

Last time we introduced probability 
Terms like sample space, event, probability space

We talked about uniform probability spaces, a common type of probability space

Today, we’re talking about conditional probability
How do we compute probabilities when we’re given some partial/extra information?

- What is conditioning, and what does conditional probability mean? 

- Rules to work with conditional probability (Bayes’ rule, law of total probability)

- Intuition about conditional probability 



Conditional Probabilities



Conditioning

You roll a fair red die and a fair blue die (without letting the dice affect 
each other).

But they fell off the table and you can’t see the results.

I can see the results – I tell you the sum of the two dice is 4. 

What’s the probability that the red die shows a 5, conditioned on 
knowing the sum is 4?



Conditioning

You roll a fair red die and a fair blue die (without letting the dice affect 
each other).

But they fell off the table and you can’t see the results.

I can see the results – I tell you the sum of the two dice is 4. 

What’s the probability that the red die shows a 5, conditioned on 
knowing the sum is 4?

It’s 0. 

Without the conditioning it was 1/6.



Conditioning

When I told you “the sum of the dice is 4” we restricted the sample space. 

The only remaining outcomes are { 1,3 , 2,2 , 3,1 } out of 1,2,3,4,5,6 ×
{1,2,3,4,5,6}.

Outside the (restricted) sample space, the probability is going to become 0. 
What about the probabilities inside?



Conditional Probability

Just like with the formal definition of probability, this is pretty abstract.
It does accurately reflect what happens in the real world.

If ℙ 𝐵 = 0, we can’t condition on it (it can’t happen! There’s no point in 
defining probabilities where we know 𝐵 has not happened) – ℙ(𝐴|𝐵) is 
undefined when ℙ 𝐵 = 0.

For an event 𝐵, with ℙ 𝐵 > 0,
the “Probability of 𝐴 conditioned on 𝑩” is 

ℙ 𝑨 𝑩 =
ℙ 𝑨 ∩ 𝑩

ℙ 𝑩

Conditional Probability



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐵)



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐵)

ℙ 𝐴 ∩ 𝐵 = ℙ ∅ = 0
ℙ 𝐵 = 3/36

𝑃 𝐴 𝐵 =
0

3/36



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)

ℙ 𝐴 ∩ 𝐶 = 1/36
ℙ 𝐶 = 6/36

ℙ 𝐴 𝐶 =
1/36

6/36



Conditioning Practice

A ~ Red die 6 

B ~ Sum is 7

C ~ Sum is 9

ℙ 𝐴 𝐵 = ?

ℙ 𝐴 𝐶 = ?

ℙ 𝐵 𝐴 = ?

.

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Take a few minutes to work on 

this with the people around you! 

(also on your handout)

PollEv.com/cse312



Conditioning Practice

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

A ~ Red die 6 

B ~ Sum is 7

ℙ 𝐴 𝐵

= ℙ(𝐴 ∩ 𝐵)/𝑃(𝐵)

=

= 1/6



Conditioning Practice

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

A ~ Red die 6 

C ~ Sum is 9

ℙ 𝐴 𝐶

= ℙ(𝐴 ∩ 𝐶)/𝑃(𝐶)

=

= 1/4



Conditioning Practice

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

B ~ Sum is 7 

A ~ Red die is 6

ℙ 𝐵 𝐴

= ℙ(𝐵 ∩ 𝐴)/𝑃(𝐴)

=

= 1/6



Conditioning Practice

Red die 6 
conditioned on 
sum 7 1/6

Red die 6 
conditioned on 
sum 9 1/4

Sum 7 conditioned 
on red die 6 1/6

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Direction Matters?

Are ℙ(𝐴|𝐵) and ℙ(𝐵|𝐴) the same?



Direction Matters

No! ℙ(𝐴|𝐵) and ℙ(𝐵|𝐴) are different quantities.

ℙ(“traffic on the highway” | “it’s snowing”) is close to 1

ℙ(“it’s snowing” | “traffic on the highway”) is much smaller; there many 
other times when there is traffic on the highway

It’s a lot like implications – order can matter a lot!

(but there are some 𝐴, 𝐵 where the conditioning doesn’t make a 
difference)



Wonka Bars
Example working with conditional probabilities



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Willy Wonka

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?

Which do you think is closest to the right answer? A. 0.1%

B. 10%

C. 50%

D. 99%
PollEv.com/cse312



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

What probability are we looking for?

“If you pick up a bar and it alerts, what is the probability 
you have a golden ticket?”

ℙ 𝐵 𝐴 = ?



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

What probability are we looking for?

ℙ 𝐵 𝐴 = ?

What probabilities are each of these from the problem? 
Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

What probability are we looking for?

ℙ 𝐵 𝐴 = ?

What probabilities are each of these from the problem? 
Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. ℙ 𝐴 ത𝐵 = 0.01

ℙ 𝐴 𝐵 = 0.999

ℙ(𝐵) = 0.001



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

To summarize…

ℙ 𝐵 = 0.001 

ℙ 𝐴 𝐵 = 0.999
ℙ 𝐴 ത𝐵 = 0.01  

We’re looking for ℙ(𝐵|𝐴) = ??? 



Reversing the Conditioning

All of our information conditions on whether 𝐵 happens or not
ℙ 𝐴 𝐵 , ℙ(𝐴| ത𝐵) -- “is the test positive if we know there is/there is not a golden ticket?” 

But we’re interested in the “reverse” conditioning. 
We know the scale alerted us/the test is positive, but do we have a golden ticket?

Is there a relationship between these probabilities? 

ℙ(𝐵) = 0.1%

ℙ(𝐴|𝐵) = 99.9%

ℙ(𝐴| ത𝐵) = 1%

ℙ(𝐵|𝐴) = ??? 



Bayes’ Rule: relates ℙ(𝐴|𝐵) and ℙ 𝐵 𝐴

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule



Bayes’ Rule: relates ℙ(𝐴|𝐵) and ℙ 𝐵 𝐴

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

.001

ℙ(𝐵) = 0.1%

ℙ(𝐴|𝐵) = 99.9%

ℙ(𝐴| ത𝐵) = 1%

ℙ(𝐵|𝐴) = ??? 



Bayes’ Rule: relates ℙ(𝐴|𝐵) and ℙ 𝐵 𝐴

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

.001

We’re looking for ℙ 𝐵 𝐴 , so to solve for that, all we need left is ℙ(𝐴)

ℙ(𝐵) = 0.1%

ℙ(𝐴|𝐵) = 99.9%

ℙ(𝐴| ത𝐵) = 1%

ℙ(𝐵|𝐴) = ??? 



What’s ℙ(𝐴)?

We know the probability of 𝐴 conditioned on whether the bar has 
the ticket (𝐵 and ത𝐵)

How can we use those conditional probabilities to find the 
probability of 𝐴 when we’re not conditioning on anything? 

We’ll use a trick called “the law of total probability”



What’s ℙ(𝐴)?

We know the probability of 𝐴 conditioned on whether the bar has 
the ticket (𝐵 and ത𝐵)

How can we use those conditional probabilities to find the 
probability of 𝐴 when we’re not conditioning on anything? 

We’ll use a trick called “the law of total probability”:

ℙ 𝐴 = ℙ 𝐴 𝐵 ⋅ ℙ 𝐵 + ℙ 𝐴 ത𝐵 ⋅ 𝑃 ത𝐵

      = 0.999 ⋅ .001 + .01 ⋅ .999

     = .010989



(detour) Law of Total Probability



Partitions

Sets 𝐴1, 𝐴2, …., 𝐴𝑛 partition a set 𝐵 if:

1. They do not overlap (they are mutually exclusive)
    𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all pairs of 𝑖 and j 

2. They cover/exhaust the entire set 𝑩
    𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 = 𝐵

e.g., the sets 𝐴 = 1,4 , 𝐵 = 2,5,6 , 𝐶 = 3  partition the set 
𝐵 = 1,2,3,4,5,6

B

𝐴1

𝐴2

𝐴3

𝐴4



Partitions of a sample space

Events 𝐸1, 𝐸2, 𝐸3, 𝐸4 partition the sample space Ω if:

1. They do not overlap (they are mutually exclusive)
    𝐸𝑖 ∩ 𝐸𝑗 = ∅ for all pairs of 𝑖 and j 

2. They cover/exhaust the entire sample space 𝛀
    𝐸1 ∪ 𝐸2 ∪ ⋯ ∪ 𝐸𝑛 = Ω

An event and it’s complement (𝐴 and ҧ𝐴) partition Ω
Because (1) they are mutually exclusive  

              (2) 𝐴 ∪ ҧ𝐴 = Ω, every outcome is either in the 𝐴 or not

Ω

𝐸1

𝐸2

𝐸3

𝐸4



Law of Total Probability

𝐸1, 𝐸2, 𝐸3, 𝐸4 partition the sample space Ω

Ω

𝐸1

𝐸2

𝐸3

𝐸4



Law of Total Probability

𝐸1, 𝐸2, 𝐸3, 𝐸4 partition the sample space Ω

Now, we want to find the probability of some event 𝐴 
in this sample space - ℙ(𝐴) 

Ω

𝐸1

𝐸2

𝐸3

𝐸4

𝐴



Law of Total Probability

𝐸1, 𝐸2, 𝐸3, 𝐸4 partition the sample space Ω

Now, we want to find the probability of some event 𝐴 
in this sample space - ℙ(𝐴) 

Because it might overlap with the partitions:

ℙ 𝐴 = 

ℙ 𝐴 ∩ 𝐸1  + ℙ 𝐴 ∩ 𝐸2     +ℙ 𝐴 ∩ 𝐸3      + ℙ 𝐴 ∩ 𝐸4 =

Ω

𝐸1

𝐸2

𝐸3

𝐸4

𝐴



Law of Total Probability

𝐸1, 𝐸2, 𝐸3, 𝐸4 partition the sample space Ω

Now, we want to find the probability of some event 𝐴 
in this sample space - ℙ(𝐴) 

Because it might overlap with the partitions:

ℙ 𝐴 = 

ℙ 𝐴 ∩ 𝐸1  + ℙ 𝐴 ∩ 𝐸2     +ℙ 𝐴 ∩ 𝐸3      + ℙ 𝐴 ∩ 𝐸4 =

Ω

𝐸1

𝐸2

𝐸3

𝐸4

𝐴

ℙ 𝐴|𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
 → ℙ 𝐴 ∩ 𝐵  = ℙ 𝐴|𝐵  ℙ 𝐵



Law of Total Probability

𝐸1, 𝐸2, 𝐸3, 𝐸4 partition the sample space Ω

Now, we want to find the probability of some event 𝐴 
in this sample space - ℙ(𝐴) 

Because it might overlap with the partitions:

ℙ 𝐴 = 

ℙ 𝐴 ∩ 𝐸1  + ℙ 𝐴 ∩ 𝐸2     +ℙ 𝐴 ∩ 𝐸3      + ℙ 𝐴 ∩ 𝐸4 =

ℙ 𝐴|𝐸1 ℙ 𝐸1 + ℙ 𝐴|𝐸2 ℙ(𝐸2)+ ℙ 𝐴|𝐸3 ℙ(𝐸3)+ ℙ 𝐴|𝐸4 ℙ(𝐸4)

Ω

𝐸1

𝐸2

𝐸3

𝐸4

𝐴

ℙ 𝐴|𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
 → ℙ 𝐴 ∩ 𝐵  = ℙ 𝐴|𝐵  ℙ 𝐵



Law of Total Probability (more formally)

𝐸1, 𝐸2, 𝐸3, 𝐸4 partition the sample space Ω

ℙ 𝐴 =  

ℙ 𝐴 ∩ Ω  =

ℙ 𝐴 ∩ (E1 ∪ E2 ∪ 𝐸3 ∪ 𝐸4) =

ℙ( 𝐴 ∩ 𝐸1 ∪ 𝐴 ∩ 𝐸2 ∪ 𝐴 ∩ 𝐸3 ∪ 𝐴 ∩ 𝐸4) =

ℙ 𝐴 ∩ 𝐸1  + ℙ 𝐴 ∩ 𝐸2     +ℙ 𝐴 ∩ 𝐸3      + ℙ 𝐴 ∩ 𝐸4 =

ℙ 𝐴|𝐸1 ℙ 𝐸1 + ℙ 𝐴|𝐸2 ℙ(𝐸2)+ ℙ 𝐴|𝐸3 ℙ(𝐸3)+ ℙ 𝐴|𝐸4 ℙ(𝐸4)

ℙ 𝐴|𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
 → ℙ 𝐴 ∩ 𝐵  = ℙ 𝐴|𝐵  ℙ 𝐵

Because 𝐴 ⊆ Ω

Definition of partitions

Distributive property of 
intersection over union

By def. of partition 𝐸𝑖 ’s are all 
mutually exclusive, so each 
𝐴 ∩ 𝐸𝑖 is also mutually 
exclusive. Then, applying 
additive property of 
probability for mutually 
exclusive events



Law of Total Probability

To generalize…

Let 𝐸1, 𝐸2, … , 𝐸𝑘 be events that partition the sample space 𝛺.

For any event 𝐴, 

ℙ 𝐴 = ෍

all 𝑖

ℙ(𝐴 ∩ 𝐸𝑖) = ෍

all 𝑖

ℙ 𝐸𝑖|𝐴𝑖 ℙ(𝐴𝑖)

Law of Total Probability



Back to the Wonka Bars!
Now that we’ve totally forgotten why we needed this rule… 



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

What probability are we looking for?

ℙ 𝐵 𝐴 = ?

What probabilities are each of these from the problem? 
Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. ℙ 𝐴 ത𝐵 = 0.01

ℙ 𝐴 𝐵 = 0.999

ℙ(𝐵) = 0.001



Bayes Rule: relates ℙ(𝐴|𝐵) and ℙ 𝐵 𝐴

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

.001

We’re looking for ℙ 𝐵 𝐴 , so to solve for that, all we need left is ℙ(𝐴)

ℙ(𝐵) = 0.1%

ℙ(𝐴|𝐵) = 99.9%

ℙ(𝐴| ത𝐵) = 1%

ℙ(𝐵|𝐴) = ??? 



What’s ℙ(𝐴)?

We know the probability of 𝐴 conditioned on whether the bar has 
the ticket (𝐵 and ത𝐵)

How can we use those conditional probabilities to find the 
probability of 𝐴 when we’re not conditioning on anything? 

We’ll use a trick called “the law of total probability (LoTP)”:

The events 𝐵 and ത𝐵 partition the sample space. Then, by LoTP:

ℙ 𝐴 = ℙ 𝐴 𝐵 ⋅ ℙ 𝐵 + ℙ 𝐴 ത𝐵 ⋅ 𝑃 ത𝐵

      = 0.999 ⋅ .001 + .01 ⋅ .999

     = .010989



Solving for ℙ 𝐵 𝐴  

Now, we plug in and solve for ℙ 𝐵 𝐴 ….

0.999 =
ℙ 𝐵 𝐴 ⋅ .010989

.001

Solving ℙ 𝐵 𝐴 =
1

11
, i.e. about 0.0909.

Only about a 10% chance that the bar has the golden ticket!



Wait a minute…

That doesn’t fit with many of our guesses. What’s going on?

Let’s say we tested all 1000 bars. 

Approximately…..

1 has a golden ticket, 999 do not have a golden ticket

Let’s say the scale correctly alerts on the golden ticket

About 1% of the 999 without a golden ticket would be a positive. Let’s 
say the scale alerted on 10 of the bars without a golden ticket

But, in only 1 out of the 10 + 1 positives, we had the golden ticket

> Golden tickets on 0.1% of his Wonka Bars.

> If the bar you weigh does have a golden ticket, the 

scale will alert you 99.9% of the time.

> If the bar you weigh does not have a golden ticket, 

the scale will (falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability 

you have a golden ticket?



Visually

Gold bar is the one (true) golden ticket bar.
True positive

Purple bars don’t have a ticket, tested negative.
True negative

Red bars don’t have a ticket, tested positive.
False positive

The test is, in a sense, doing really well. 

It’s almost always right (only red is incorrect)

The problem is it’s also the case that the correct 

answer is almost always “no.”



Updating Your Intuition

     Take 1: The test is actually good and has VASTLY increased our belief 
that there IS a golden ticket when you get a positive result.

If we told you “your job is to find a Wonka Bar with a golden ticket” 
without the test, you have 1/1000 chance, with the test, you have (about) 
a 1/11 chance. That’s (almost) 100 times better!

This is actually a huge improvement! 

> Golden tickets on 0.1% of his Wonka Bars.

> If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the time.

> If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a golden ticket?



Updating Your Intuition

     Take 2: Humans are really bad at intuitively understanding very large 
or very small numbers.

When I hear “99% chance”, “99.9% chance”, “99.99% chance” they all go 
into my brain as “well that’s basically guaranteed” And then I forget how 
many 9’s there actually were.

But the number of 9s matters because they end up “cancelling” with the 
“number of 9’s” in the population that’s truly negative.

> Golden tickets on 0.1% of his Wonka Bars.

> If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the time.

> If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a golden ticket?



Updating Your Intuition

     Take 3: View tests as updating your beliefs, not as revealing the truth.

Bayes’ Rule says that ℙ(𝐵|𝐴) has a factor of ℙ(𝐵) in it. You have to 
translate “The test says there’s a golden ticket” to “the test says you 
should increase your estimate of the chances that you have a golden 
ticket.”

A test takes you from your “prior” beliefs of the probability to your 
“posterior” beliefs.

> Golden tickets on 0.1% of his Wonka Bars.

> If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the time.

> If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a golden ticket?



The Technical Stuff



Proof of Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
 by definition of conditional probability.

We also know ℙ 𝐵 𝐴 =
ℙ 𝐵∩𝐴

ℙ 𝐴
 → ℙ 𝐵 ∩ 𝐴 = ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

Intersections are commutative, so ℙ 𝐴 ∩ 𝐵 = ℙ 𝐵 ∩ 𝐴

ℙ 𝐴 𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
=

ℙ 𝐵∩𝐴

ℙ 𝐵
=

ℙ(𝐵|𝐴)⋅ℙ 𝐴

ℙ 𝐵

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule



A Technical Note

After you condition on an event, what remains is a probability space.

(Ω, ℙ) is a valid probability space   (A, ℙ(⋅ |𝐴)) is valid probability space
and, 𝐴 ⊆ Ω

Sum of probabilities of outcomes 
in a sample space is 1: 
σ𝜔∈𝐴 ℙ 𝜔 𝐴 = 1

ℙ ത𝐸 = 1 − ℙ(𝐸) 

Sum of probabilities in this 
conditioned probability space is 1: 
σ𝜔∈𝐴 ℙ 𝜔 𝐴 = 1

ℙ ത𝐸|𝐴 = 1 − ℙ(𝐸|𝐴) 

Careful! ℙ 𝐸| ҧ𝐴 ≠ 1 − ℙ(𝐸|𝐴) because this changes the sample space! 



An Example

Bayes Theorem still works in a probability space where we’ve already 
conditioned on 𝑆.

ℙ 𝐴 [𝐵 ∩ 𝑆] =
ℙ 𝐵 [𝐴 ∩ 𝑆] ⋅ℙ 𝐴 𝑆

ℙ(𝐵|𝑆)



A Quick Technical Remark

I often see students write things like 

ℙ([𝐴 𝐵] 𝐶) 
Thinking something like “probability of 𝐴 given 𝐵 given we also know 𝐶

This is not a thing. 

You probably want ℙ 𝐴 𝐵 ∩ 𝐶
“probability of 𝐴 given both 𝐵 and 𝐶

𝐴|𝐵 isn’t an event – it’s describing an event and telling you to restrict 
the sample space. So you can’t ask for the probability of that 
conditioned on something else.



Summary + Tips

• Today, we talked about conditional probability

•  Definition of conditional probability: 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃(𝐵)

•  Bayes’ Theorem: 𝑃 𝐴 𝐵 =
𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐵)

•  Law of Total Probability: 𝑃 𝐴 = 𝑃 𝐴 𝐸1 𝑃 𝐸1 + ⋯ + 𝑃 𝐴 𝐸𝑛 𝑃 𝐸𝑛  if 
𝐸1, 𝐸2, … 𝐸_𝑛 partition the sample space

• Now that we’re getting into more complex probabilities, it’s very helpful 
to clearly define events and then write
•  Writing down all the information given in the problem/what we’re asked for in 
terms of those events is helpful to figure out what rules we can use to relate 
them together



Extra Practice



Where There’s Smoke There’s…

There is a dangerous (you-need-to-call-the-fire-department-
dangerous) fire in your area 1% of the time.

If there is a dangerous fire, you’ll smell smoke 95% of the time;

If there is not a dangerous fire, you’ll smell smoke 10% of the time 
(barbecues are popular in your area)

If you smell smoke, should you call the fire department? 



𝑆 be the event you smell smoke

𝐹 be the event there is a dangerous fire

ℙ 𝐹 𝑆 =
ℙ(𝑆|𝐹)⋅ℙ 𝐹

ℙ(𝑆)
=

ℙ(𝑆|𝐹)⋅ℙ 𝐹

ℙ 𝑆 𝐹 ℙ 𝐹 +ℙ 𝑆 ത𝐹 ℙ ത𝐹

=
.95⋅.01

.95⋅.01+.1⋅.99
≈ .088

Probably not time yet to call the fire department.



A contrived example

You have three red marbles and one blue marble in your left pocket, 
and one red marble and two blue marbles in your right pocket.

You will flip a fair coin; if it’s heads, you’ll draw a marble (uniformly) from 
your left pocket, if it’s tails, you’ll draw a marble (uniformly) from your 
right pocket.

Let 𝐵 be you draw a blue marble. Let 𝑇 be the coin is tails.

What is ℙ(𝐵|𝑇) what is ℙ(𝑇|𝐵) ?



Updated Sequential Processes

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Updated Sequential Processes

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

ℙ 𝐵 𝑇 = 2/3; ℙ 𝐵 =
1

8
+

1

3
=

11

24

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

The right (tails) pocket is far more likely to produce a blue marble if picked 

than the left (heads) pocket is. Seems like ℙ(𝑇|𝐵) should be greater than ½.



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Bayes’ Rule says:

ℙ 𝑇 𝐵 =
ℙ(𝐵|𝑇)ℙ 𝑇

ℙ 𝐵

=
2

3
⋅
1

2

11/24
= 8/11

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.
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