
Probability
CSE 312 23Su

Lecture 4

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 



Announcements

• HW1 is due tonight (11:59pm)

• HW2 will come out this evening, due next Wednesday.

 Office Hours schedule is on the calendar on the webpage

  1-1s with me/TAs (see information on Ed)



Cards
A lot of counting problems deal with cards! 

A “standard” deck of cards has 52 cards (13 ⋅ 4 = 52). 

Each card has one of 4 suits
diamonds , 

hearts , 

clubs ♧, 

spades 

and one of 13 values/ranks (Ace,2,3,4,5,6,7,8,9,10,Jack,Queen, King). 

e.g., Ace , 5 , 5♧, 10  are all possible cards

A “𝑘-card-hand” is an unordered set of 𝑘 cards



Cards
A lot of counting problems deal with cards! 

A “standard” deck of cards has 52 cards (13 ⋅ 4 = 52). 

Each card has one of 4 suits
diamonds , 

hearts , 

clubs ♧, 

spades 

and one of 13 values/ranks (Ace,2,3,4,5,6,7,8,9,10,Jack,Queen, King). 

e.g., Ace , 5 , 5♧, 10  are all possible cards

A “𝑘-card-hand” is an unordered set of 𝑘 cards

How many five-card “flushes” are there? – a flush is a hand of cards all of the 
same suit. (e.g., {A , 3 , 5 , 6 , Q })

Go to pollev.com/cse312



Five-card “flushes”

How many five-card “flushes” are there? – a flush is a hand of cards all of 
the same suit. 
Think: How would I create a set of cards that is a flush? 

Way 1: 

1. Pick the suit (e.g., ) – 𝟒
𝟏

2. Pick the specific values/cards from that suit (e.g., {A,3,5,6,Q}) - 𝟏𝟑
𝟓

Now we’ve created an unordered 5-card flush! (e.g., {A , 3 , 5 , 6 , Q })

4
1

⋅ 13
5



Five-card “flushes”

Way 2: 

Pretend order matters. 

1. Pick any first card – 52 options

2. All remaining cards must be from the same suit of that first suit: 
 12 options for the 2nd card, 11 options for the 3rd card, etc. 

Divide out the overcounting - divide by 5!, since order isn’t supposed to 
matter (i.e., only count each unordered flush once)

52⋅12⋅11⋅10⋅9

5!

This equals the same number as what we got on the last slide!



How many 5-card hands have at least 3 aces?

There are 4 Aces (and 48 non aces) in a deck of cards

1. Choose 𝟑 aces: 4
3

2. Then pick 𝟐 of the 𝟒𝟗 remaining cards to form a 5(the last ace is 

allowed as well, because we’re allowed to have all 4): 49
2

4
3

⋅ 49
2

What’s wrong with this calculation? Does it,

A) Overcount B) Undercount C) It’s correct! D) I have no idea :)

Go to pollev.com/cse312



Sleuth’s Criterion
How to check if we counted correctly?

For each outcome that we want to count, there should be exactly one 
set of choices in the sequential process that will lead to that outcome. 

> If there are no sequence of choices that will lead to the outcome, we 
have undercounted.

> If there is more than one sequence of choices that will lead to the 
outcome, we have overcounted. 



Sleuth’s Criterion (in context)
How to check if we counted correctly?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

> If there are no sequence of choices that will lead to a particular 5-card 
hand with at least 3 aces, we have undercounted.

> If there is more than one sequence of choices that will lead to a 
particular 5-card hand with at least 3 aces, we have overcounted. 



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , Q , K  is a valid outcome should counted exactly once. 

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {Q , K }



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , Q , K  is a valid outcome should counted exactly once. 

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {Q , K }

Great! There’s no other set 
of choices that will lead to 
this hand.



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , A , K  is a valid outcome should counted exactly once. 

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , A , K  is a valid outcome should counted exactly once. 
But…

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }

Both of these are different 
choices in the sequential 
process and are counted 
separately, but they are 
the same hand!

This is overcounting  



Fixing The Overcounting



How many 5-card hands have at least 3 aces?

Way 1: We could start with our incorrect solution & subtract the 
overcounting.

What kinds of hands do we overcount (counted many times in the 
sequential process)?

> 5-card hands with 4 Aces (i.e., a hand like {A♧, A , A , A , X})

Our original incorrect solution:

1. Choose 𝟑 aces: 4
3

, 2. Then pick 𝟐 of the 𝟒𝟗 remaining cards: 49
2
→

4
3

⋅ 49
2



How many 5-card hands have at least 3 aces?

Way 1: We could start with our incorrect solution & subtract the overcounting.

 

What kinds of hands do we overcount (counted many times in the sequential process)?

> 5-card hands with 4 Aces (i.e., a hand like {A♧, A , A , A , X})

So, how many outcomes are overcounted? 

 >There are 4
4

⋅ 48 = 48 5-card hands with all 4 Aces

> Each of these hands is counted 4 times, but we only want to count it once

> So we’ve counted 4 − 1 ⋅ 48 = 3 ⋅ 48 processes that shouldn’t count.

That would give a corrected total of 4
3

⋅ 49
2

− 3 ⋅ 48

Our original incorrect solution:

1. Choose 𝟑 aces: 4
3

, 2. Then pick 𝟐 of the 𝟒𝟗 remaining cards: 49
2
→

4
3

⋅ 49
2

{A♧, A , A }, {A , X}
{A♧, A , A }, {A , X}
{A♧, A , A }, {A , X}
{A , A , A }, {A♧, X}



How many 5-card hands have at least 3 aces?

Way 1: We could subtract out the overcounting - count exactly which hands 
are overcounted in our sequential process, and how many times each of 
those hands are overcounted, and subtract that from our initial count. 

4

3
⋅

49

2
− 3 ⋅ 48

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 



How many 5-card hands have at least 3 aces?

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 

Does this overcount/undercount?
For a valid outcome, there should be exactly 1 set of choices leading to that outcome:

A♧, A , A , Q ♧, K  - this will fall under the first case. The only possible set of 

choices leading to this is {A♧, A , A } in the 1st step and {Q ♧, K } in the 2nd



How many 5-card hands have at least 3 aces?

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 

Does this overcount/undercount?
For a valid outcome, there should be exactly 1 set of choices leading to that outcome:

A♧, A , A , A , K  - this will fall under the second case. The only possible set of 

choices leading to this is {A♧, A , A , A } in the 1st step and {K } in the 2nd



Takeaways

• There are often many ways to do the same problem! When you can do 
a problem two very different ways and get the same answer, you get 
much more confident in the answer.

• To check for overcounting, try thinkin about some actual outcomes 
that we want to be counted exactly once and make sure it can be 
constructed with exactly one set of choices in the sequential process



Today

So far…we’ve done a lot of counting.

Starting today, we get to calculate probabilities! 
And the counting techniques we’ve learned are going to come in handy when 
computing probabilities ☺ 

Mostly notation and vocabulary today. 



Probability



What is Probability?

There are lots of things we aren’t certain about!
Is it going to rain this weekend? 

Am I going to get a 6 when rolling this dice? 



What is Probability?

There are lots of things we aren’t certain about!
Is it going to rain this weekend? 

Am I going to get a 6 when rolling this dice? 

Probability is a way of quantifying our uncertainty when more than one 
outcome is possible
What is the probability that is rains tomorrow? 

What is the probability that I get a 6 when rolling a dice? 



What is Probability?

There are lots of things we aren’t certain about!
Is it going to rain this weekend? 

Am I going to get a 6 when rolling this dice? 

Probability is a way of quantifying our uncertainty when more than one 
outcome is possible
What is the probability that is rains tomorrow? 

What is the probability that I get a 6 when rolling a dice? 

To have “real-world” examples, we’re going to make some assumptions:
We can flip a coin, and each face is equally likely to come up

We can roll a die, and every number is equally likely to come up

We can shuffle a deck of cards so that every ordering is equally likely.



Experiment

Examples:

Tossing a fair coin

Rolling a dice

Drawing a name from a hat

An action or process that leads to one or more outcomes.

A random experiment is an experiment where the outcome 

can’t be predicted with certainty beforehand

Experiment



Sample Space

Examples:

For a single coin flip, Ω = {𝐻, 𝑇}

For a series of two coin flips, Ω = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻, 𝑇𝑇}

For rolling a (normal) die: Ω = {1,2,3,4,5,6}

A sample space Ω is the set of all possible 

outcomes of an experiment.

Sample Space



Event

Examples:

Get a head in one coin flip (𝐸 = {𝐻})

Get at least one head among two coin flips (𝐸 = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻})

Get an even number on a die-roll (𝐸 = {2,4,6}).

An event 𝐸 ⊆ Ω is a subset of possible 

outcomes (i.e. a subset of the sample space 𝛀)

Event



Event

Examples:

Get a head in one coin flip (𝐸 = {𝐻})

Get at least one head among two coin flips (𝐸 = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻})

Get an even number on a die-roll (𝐸 = {2,4,6}).

An event 𝐸 ⊆ Ω is a subset of possible 

outcomes (i.e. a subset of the sample space 𝛀)

Event

Notation note: Since sets are usually represented with a single capital letter, we also 

denote events with a single capital letter (it doesn’t have to be 𝐸, it can be anything!)



Examples D2=1 D2=2 D2=3 D2=4

D1=1 (1,1) (1,2) (1,3) (1,4)

D1=2 (2,1) (2,2) (2,3) (2,4)

D1=3 (3,1) (3,2) (3,3) (3,4)

D1=4 (4,1) (4,2) (4,3) (4,4)

Experiment:

I roll a blue 4-sided die 

and a red 4-sided die. 

The table contains the 

sample space.

Ω = { 1,1 , 1,2 , … }



Examples D2=1 D2=2 D2=3 D2=4

D1=1 (1,1) (1,2) (1,3) (1,4)

D1=2 (2,1) (2,2) (2,3) (2,4)

D1=3 (3,1) (3,2) (3,3) (3,4)

D1=4 (4,1) (4,2) (4,3) (4,4)

Let 𝐴 be the event that “the sum 

of the dice is even”. The outcomes 

in this event are in gold
𝐴 = { 1,1 , 1,3 , 2,2 , 2,4 , 3,1 , 3,3 , 4,2 , (4,4)}

Experiment:

I roll a blue 4-sided die 

and a red 4-sided die. 

The table contains the 

sample space.

Ω = { 1,1 , 1,2 , … }



Examples D2=1 D2=2 D2=3 D2=4

D1=1 (1,1) (1,2) (1,3) (1,4)

D1=2 (2,1) (2,2) (2,3) (2,4)

D1=3 (3,1) (3,2) (3,3) (3,4)

D1=4 (4,1) (4,2) (4,3) (4,4)

Experiment:

I roll a blue 4-sided die 

and a red 4-sided die. 

The table contains the 

sample space.

Ω = { 1,1 , 1,2 , … }

Let 𝐴 be the event that “the sum 

of the dice is even”. The outcomes 

in this event are in gold
𝐴 = { 1,1 , 1,3 , 2,2 , 2,4 , 3,1 , 3,3 , 4,2 , (4,4)}

Let 𝐵 be the event that “first die is 

a 1”. The outcomes in this event 

are in green.
𝐵 = { 1,1 , 1,2 , 1,3 , 1,4 }



Mutually Exclusive Events

Two events 𝐸, 𝐹 are mutually exclusive if they can’t happen 
simultaneously.

In notation, 𝐸 ∩ 𝐹 = ∅ (i.e. they’re disjoint subsets of the sample space).

𝐸 𝐹

𝛀



Mutually Exclusive Events

Two events 𝐸, 𝐹 are mutually exclusive if they can’t happen 
simultaneously.

In notation, 𝐸 ∩ 𝐹 = ∅ (i.e. they’re disjoint subsets of the sample space).

For example, if we flip a coin and roll a dice: Ω = 𝐻, 𝑇 × {1,2,3,4,5,6}

𝐸1 =“the coin came up heads”

𝐸2 =“the coin came up tails”

𝐸3 =“the die showed an even number”

𝐸 𝐹

𝛀



Mutually Exclusive Events

Two events 𝐸, 𝐹 are mutually exclusive if they can’t happen 
simultaneously.

In notation, 𝐸 ∩ 𝐹 = ∅ (i.e. they’re disjoint subsets of the sample space).

For example, if we flip a coin and roll a dice: Ω = 𝐻, 𝑇 × {1,2,3,4,5,6}

𝐸1 =“the coin came up heads”

𝐸2 =“the coin came up tails”

𝐸3 =“the die showed an even number”

𝐸1 and 𝐸2 are mutually exclusive. 

𝐸1 and 𝐸3 are not mutually exclusive. 

𝐸 𝐹

𝛀



Probability

Formally, we define a function ℙ that assigns a probability to every 
outcome 𝜔 in the sample space. 

 

A probability is a number between 0 and 1 describing 

how likely a particular outcome or event is.

Probability

ℙ
𝜔 

(a particular outcome

- an element of Ω) 

ℙ(𝜔) - A value in [0,1]
(the probability of that outcome)

Notation: ℙ 𝜔 , 𝑃(𝜔), Pr(𝜔) are all equivalent! 



Example

Imagine we toss one coin.

Our sample space Ω = {𝐻, 𝑇}

What do you want ℙ to be?
Recall: ℙ assigns a probability to each outcome in the sample space



Example

Imagine we toss one coin.

Our sample space Ω = {𝐻, 𝑇}

What do you want ℙ to be?
Recall: ℙ assigns a probability to each outcome in the sample space

It depends on what we want to model!

If we have a fair coin ℙ 𝐻 = ℙ 𝑇 =
1

2
.

But we also might have a biased coin: ℙ 𝐻 = .85, ℙ 𝑇 = 0.15.



Probability Space

A (discrete) probability space is a pair (Ω, ℙ) where:

𝛀 is the sample space

ℙ: Ω → [0,1] is the probability measure.

ℙ satisfies:

• ℙ 𝑥 ≥ 0 for all 𝑥
• σ𝜔∈Ω ℙ(𝜔)  = 1

Probability Space



Probability Space

Experiment: Flip a fair coin and roll a fair (6-sided) die.

Ω = 𝐻, 𝑇 × 1,2,3,4,5,6 = { 𝐻, 1 , 𝐻, 2 … . , 𝑇, 1 , 𝑇, 2 , … }

ℙ 𝜔 =
1

12
 for every 𝜔 ∈ Ω

Is (Ω, ℙ) a valid probability space?

ℙ takes in elements of Ω and outputs numbers between 0 and 1

 σ𝜔∈Ω ℙ 𝜔 = 12 ⋅
1

12
= 1. 



ℙ 𝐸 = ෍

𝜔∈E

ℙ(𝜔)

Formally, the ℙ takes in only single outcomes. But…we will use the same 
notation to define the probability of an event (set of outcomes)!

Probability of An Event? 



Formally, the ℙ takes in only single outcomes. But…we will use the same 
notation to define the probability of an event (set of outcomes)!

Probability of An Event? 

Example: 

 Flip a fair coin and roll a fair (6-sided) die.

Ω = 𝐻, 𝑇 × 1,2,3,4,5,6 , ℙ 𝜔 =
1

12
 for every 𝜔 ∈ Ω

Let 𝐸 be the event the dice is a 2. 𝐸 = 𝐻, 2 , 𝑇, 2

ℙ 𝐸 = ℙ 𝐻, 2 +  ℙ 𝐻, 2 =
1

12
+

1

12
=

1

6

ℙ 𝐸 = ෍

𝜔∈E

ℙ(𝜔)



Probability Facts



We wrote down 2 requirements (axioms) on probability measures

• ℙ 𝑥 ≥ 0 for all 𝑥 (non-negativity)

• σ𝑥∈Ω ℙ(𝑥)  = 1 (normalization)

Axioms and Consequences

These lead quickly to these three corollaries:

• ℙ ത𝐸 = 1 − ℙ(𝐸) (complementation)

• If 𝐸 ⊆ 𝐹, then ℙ 𝐸 ≤ ℙ(𝐹) (monotonicity)

• ℙ 𝐸 ∪ 𝐹 = ℙ 𝐸 + ℙ 𝐹 − ℙ(𝐸 ∩ 𝐹) (inclusion-exclusion)
•  if 𝐸 and 𝐹 are mutually exclusive: ℙ 𝐸 ∪ 𝐹 = ℙ 𝐸 + ℙ 𝐹



Uniform Probability Spaces
A common type of probability space!



Uniform Probability Space

In a uniform probability space Ω, ℙ , every outcome in the sample 
space is equally likely to occur. For every outcome 𝜔 ∈ Ω, 

ℙ 𝜔 = ? 



Uniform Probability Space

In a uniform probability space Ω, ℙ , every outcome in the sample 
space is equally likely to occur. For every outcome 𝜔 ∈ Ω, 

ℙ 𝜔 =
1

|Ω|

For example, 

> Flipping a fair coin: for every 𝜔 ∈ Ω, ℙ 𝜔 =
1

2
  Ω = {1,2,3,4,5,6}

> Rolling a fair dice: for every 𝜔 ∈ Ω, ℙ 𝜔 =
1

6
  Ω = {1,2,3,4,5,6}



Uniform Probability Space

In a uniform probability space Ω, ℙ , every outcome in the sample 
space is equally likely to occur. For every outcome 𝜔 ∈ Ω, 

ℙ 𝜔 =
1

|Ω|

Finding the probability of an event in a uniform probability space: 

ℙ 𝐸 = ෍

𝜔∈𝐸

ℙ 𝜔 = ෎

𝜔∈𝐸

1

|Ω|
 =

𝐸

|Ω|



Uniform Probability Space (summarized ☺)

In a uniform probability space Ω, ℙ , every outcome in the sample 
space is equally likely to occur. For every outcome 𝜔 ∈ Ω, 

ℙ 𝜔 =
1

|Ω|

Finding the probability of an event in a uniform probability space: 

ℙ 𝐸 = ෍

𝜔∈𝐸

ℙ 𝜔 = ෎

𝜔∈𝐸

1

|Ω|
 =

𝐸

|Ω|

A uniform probability space is a probability space where all 

outcomes in the sample space are equally likely to occur.

> For every outcome 𝜔 ∈ Ω, ℙ 𝜔 =
1

|Ω|

> For an event 𝐸 ⊆ Ω, ℙ 𝐸 =
𝐸

Ω

Uniform Probability Space



Uniform Probability Space

Let your sample space be all possible outcomes of a sequence of 100 
coin tosses. Assign the uniform measure to this sample space. What is 
the probability of the event “there are exactly 50 heads?

 

A. 100
50

/2100

B. 1/101 

C. 1/2

D. 1/250

E. There is not enough information in this problem.

Fill out the poll everywhere so Claris knows 

how much to explain

Go to pollev.com/cse312 and login with your 

UW identity



Uniform Probability Space

Let your sample space be all possible outcomes of a sequence of 100 
coin tosses. Assign the uniform measure to this sample space. What is 
the probability of the event “there are exactly 50 heads?



Uniform Probability Space

Let your sample space be all possible outcomes of a sequence of 100 
coin tosses. Assign the uniform measure to this sample space. What is 
the probability of the event “there are exactly 50 heads?

Ω is the set of all possible sequences of 100 coin tosses
Ω = 2100 because each of the 100 coin tosses have 2 options if it is head or tails



Uniform Probability Space

Let your sample space be all possible outcomes of a sequence of 100 
coin tosses. Assign the uniform measure to this sample space. What is 
the probability of the event “there are exactly 50 heads?

Ω is the set of all possible sequences of 100 coin tosses
Ω = 2100 because each of the 100 coin tosses have 2 options if it is head or tails

Our probability measure is ℙ(𝜔) =
1

2100 for every 𝜔 ∈ Ω



Uniform Probability Space

Let your sample space be all possible outcomes of a sequence of 100 
coin tosses. Assign the uniform measure to this sample space. What is 
the probability of the event “there are exactly 50 heads?

Ω is the set of all possible sequences of 100 coin tosses
Ω = 2100 because each of the 100 coin tosses have 2 options if it is head or tails

Our probability measure is ℙ(𝜔) =
1

2100 for every 𝜔 ∈ Ω

Let 𝐻 be the event that there are exactly 50 heads

𝐻 = 100
50

 because we pick which of the 50 coin tosses are heads – the rest are tails

𝑷 𝑯 =
𝑯

|𝛀|
=

𝟏𝟎𝟎
𝟓𝟎

𝟐𝟏𝟎𝟎



Uniform Probability Space

Let your sample space be all possible outcomes of a sequence of 100 
coin tosses. Assign the uniform measure to this sample space. What is 
the probability of the event “there are exactly 50 heads?

We need to be careful how we define the sample space! 

For example, if we defined the sample space as the number of heads 
in the sequence: Ω = {1,2, … , 99, 100}, we can’t use a uniform 
probability space because every outcome is not equally likely here. 

If we want to use a uniform probability, pick a sample space where 
every outcome is equally likely! 



More examples
Mainly focusing on uniform probability spaces



More Examples!

Suppose you roll two dice. Each die is fair and they don’t affect each 
other. What is the probability of both dice being even?

What is the sample space?

What is the probability measure ℙ?

What is the event?

What is the probability?



More Examples!

Suppose you roll two dice. Each die is fair and they don’t affect each 
other. What is the probability of both dice being even?

What is the sample space? Ω = 1,2,3,4,5,6 × {1,2,3,4,5,6} 

What is the probability measure ℙ? ℙ 𝜔 = 1/36 for all 𝜔 ∈ Ω

What is the event? 2,4,6 × {2,4,6}

What is the probability? 32/62



More Examples!

Suppose you roll two dice. Each die is fair and they don’t affect each 
other. What is the probability of both dice being even?

What is the sample space?
{ 1,1 , 1,2 , 1,3 , 1,4 , 1,5 , 1,6 , 2,2 , 2,3 , 2,4 , 2,5 , (2,6)

3,3 , 3,4 , 3,5 , 3,6 , 4,4 , 4,5 , 4,6 , 5,5 , 5,6 , (6,6)}

What is the probability measure ℙ? 

ℙ (𝑥, 𝑦) = 2/36 if 𝑥 ≠ 𝑦,  ℙ 𝑥, 𝑥 = 1/36

What is the event? { 2,2 , 4,4 , 6,6 , 2,4 , 2,6 , 4,6 }

What is the probability? 3 ⋅
1

36
+ 3 ⋅

2

36
=

9

36

What if we defined our sample space as the unordered pairs of the die?



Takeaways

There is often more than one sample space possible! But one is 
probably easier than the others. 

Finding a sample space that will make the uniform measure correct will 
usually make finding the probabilities easier to calculate.
This often involves deciding what kind of information we need to encode in the 
sample space (e.g., should we care about order or not?)



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space:

Probability Measure:

Event:

Probability:



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Ω = { 𝑥, 𝑦 : 𝑥 and 𝑦 are different cards }

Probability Measure: uniform measure ℙ 𝜔 =
1

52⋅51

Event: all pairs with equal values

Probability: 
13⋅𝑃 4,2

52⋅51



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability: 
13⋅𝑃 4,2 ⋅50!

52!



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability: 
13⋅𝑃 4,2 ⋅50 ∗49 ∗48 ∗⋯.∗2 ∗1

52 ∗ 51 ∗ 50 ∗49 ∗48 ∗ …∗2∗1



Takeaway

There’s often information you “don’t need” in your sample space.

It won’t give you the wrong answer.

But it sometimes makes for extra work/a harder counting problem,

Good indication: you cancelled A LOT of stuff that was common in the 
numerator and denominator.



Few notes about events and samples spaces

• If you’re dealing with a situation where you may be able to use a  
uniform probability space, make sure to set up the sample space in a 
way that every outcome is equally likely.

•Try not overcomplicate the sample space – only include the information 
that you need in it. 

•When you define an event, make sure it is a subset of the sample space!
e.g., if order matters in the sample space, it should also matter in the event space



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if ?

ℙ 𝐸 = 1 if and only if ?



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if an event can’t happen.

ℙ 𝐸 = 1 if and only if an event is guaranteed (every outcome outside 
𝐸 has probability 0). 



Birthday Paradox



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

We know from the pigeonhole principle that if there are >365 people 
in the group, there will certainly be at least 2 people that share the 
same birthday. But what’s the probability of this happening if there are 
only 50 people?



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

What do you think this probability is closest to? 

A) 0.001

B) 0.5

C) 0.99

D) 1 Fill out the poll everywhere pollev.com/cse312 

and login with your UW identity



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

Sample Space: 

Probability Measure:

Event:

Probability:



Sharing Birthdays
There are about 50 people in this class. What is the probability that                   
at least 2 of us share a birthday? Assume that there are exactly 365 possible 
birthdays, and each possibility is equally likely.

Sample Space: Set of assignments of birthdays to people. Ω = 36550

Probability Measure: Uniform probability measure. ℙ 𝜔 =
1

36550 for 𝜔 ∈ Ω

Event: Let 𝐸 be the event that at least 2 people share a birthday.

Probability: ℙ 𝐸 = 1 − ℙ ത𝐸 . ത𝐸 is the event that no one shares a birthday.

ℙ ത𝐸 =
ത𝐸

Ω
=

𝑃(365,50)

36550  . 

We use a permutation for ത𝐸  because birthdays are “selected” without replacement, (all have 
different birthdays) and order matters (my birthday is different from your birthday, etc.)

ℙ 𝐸 = 1 −
𝑃 365,50

36550
≈ 097.



Sharing Birthdays

There are about 50 people in this class. What is the probability that at 
least 2 of us share a birthday? Assume that there are exactly 365 
possible birthdays, and each possibility is equally likely.

ℙ 𝐸 = 1 −
𝑃 365,50

36550
≈ 097.

This is pretty high! So almost definitely, two of us here share the same 
birthday 



That’s very likely! Why?

It turns out that human brains find thinking about probabilities difficult!

Our brains are a bit selfish! When it comes to the probability that 

someone shares our birthday, that would be 
1

365
 - not quite so likely.

But if we’re looking at any pair’s birthday in a group of 𝑛 people, there 
are 𝑛

2
 pairs of people, which grows quadratically with 𝑛. So the 

probability of at least one pair of people sharing a birthday approaches 
1 pretty fast! 



Summary

• Probability allows us to assign a value between 0 and 1 to outcomes 

• A random experiment is any process where the outcome is not known 
for certain

• The sample space of an experiment is the set of all possible outcomes

• An event is a subset of the sample space (some set of outcomes)

• The probability space is the pair (Ω, ℙ) where Ω is the sample space and 
ℙ is the probability measure (a function that assigns probabilities to 
every outcome 𝜔 in the sample space) 
• A uniform probability space is a common type of probability space where every 
outcome is equally likely. To find the probability of an event in a uniform probability 
space, we find the size of the event divided by the size of the sample space



Extra Examples



Rolling Dice

Suppose I had a two, fair, 6-sided dice that we roll, one green, one red. 
What is the probability that we see at least one 3 in the two rolls?

Sample Space:    

Probability Measure: 

Event: 

Probability:



Rolling Dice

Suppose I had a two, fair, 6-sided dice that we roll, one green, one red. 
What is the probability that we see at least one 3 in the two rolls?

Sample Space: 1,2,3,4,5,6 × {1,2,3,4,5,6} 
|Ω| is 6 ⋅ 6 = 36 because each of the dice rolls have 6 options.

Probability Measure: ℙ 𝜔 =
1

62 =
1

36

Event: Let 𝐴 be the event that we see at least one 3 in the two rolls

Probability: ℙ 𝐴 = 1 − ℙ( ҧ𝐴). ҧ𝐴 is the event that neither of the two rolls 

is a 3. ҧ𝐴 = 52 = 25 because each roll has 5 options. ℙ ҧ𝐴 =
ҧ𝐴

Ω
=

25

36
. 

So, ℙ 𝐴 = 1 −
25

36
=

15

36



Balls and Urns

You have an urn* with two red balls and two green balls inside.

Take out two of the balls replacing the first ball after you take it out.

What’s the probability of drawing out both red balls?

Sequential process: 
1

2
 probability of the first being red

1

2
 probability of the second being red.

*An urn is a vase 
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