even more counting IECTURE 3

STARS AND BARS: $\mathrm{C}(\mathrm{n}+\mathrm{k}-\mathrm{l}, \mathrm{n})$ ways to distribute n indistinguishable objects into k groups

COMBINATORIAL PROOF: Proof by showing that both sides of an equation count the same thing . PIGEONHOLE PRINCIPLE: If you place n pigeons into k holes, at least $\lceil n / k\rceil$ pigeons in same hole.

-• TODOS FOR WEEK 2 \times

Concept check 3 (due Wed 12pm)
Concept check 4 (due Friday 12pm) Concept check 5 (due next Mon 12pm) \square HW1 due Wed ll:59pm \square start HW2 \square Attend/participate in section (Thurs)

The number of ways to distribute n indistinguishable objects into k groups is $C(n+k-1, n)$ e.g., How many ways to pick 12 donuts from 5 distinct flavors where donuts of the same type are indistinguishable and order of the donuts in the box does not matter?

000000000000

used when picking objects from a groups where objects of the same type are indistinguishable

Proofs by showing that both sides of an equation count the same thing_(instead of algebraically)
e.g., prove symmetry of combinations $\binom{n}{k}=\binom{n}{n-k}$

General Steps:

1. Describe a scenario
2. Explain how the LHS counts the outcomes in that scenario
3. Explain how the RHS counts the outcomes in that same scenario
4. State that "because the LHS and RHS both count the number of outcomes in the same scenario, they must be equal"

If you place n pigeons into k holes, and $n>k$, at least 2 pigeons are in the same hole.

If you place n pigeons into k holes, at least
$\lceil n / k\rceil$ pigeons are in the same hole.

e.g., you have 10 classes, and have 3 quarters to take them in, then...

General Steps:

1. What are the pigeons? 2. What are the pigeonholes? 3. How to map from pigeons to holes?
2. There are n pigeons and k pigeonholes, so by pigeonhole principle, there is at least 1
pigeonhole with at least $\lceil n / k\rceil$ pigeons. This is what we're trying to prove because...

COUNTING REVIEW + PRACTICE!

Sum rule (split into disjoint sets)	Principle of Inclusion-Exclusion (counting the
Product rule (use a sequential process)	size of a union of sets)
Complementary Counting (counting the	"Stars and Bars" (assign indistinguishable
ways for something to not occur)	stars to distinguishable bins)
Combinations (order doesn't matter)	Niche Rules - Binomial Theorem (expanding
Permutations (order does matter)	$(x+y) \wedge n)$ and Pigeonhole Principle
Standard Deck of Cards (52 cards:	13 $\cdot 4=52$)
Each card has one of 4 suits (\downarrow,	C, ¢,) and one of 13 values/ranks
\| How many five-card "flushes" are there?	A flush is a hand of cards all of the same suit.
\| How many 5-card hands have at least 3	aces?
Approach I:	
1 Step 1. Choose 3 aces ($(4,3)$) Step 2. Pick 2 o	the 49 remaining cards ($\mathrm{C}(49,2)$)
This approach	
How do we fix this solution?	
I	
I	
,	

For each outcome that we want to count, there should be exactly one set of choices in the sequential process that will lead to that outcome.
> If there are no sequence of choices that will lead to the outcome, we have undercounted. > If there is more than one sequence of choices that will lead to the outcome, we overcounted.

