
Even More Counting
CSE 312 23Su

Lecture 3

etherpad.wikimedia.org/p/312 for (anonymous) questions/comments! 

The number of possible unique chess games is estimated to be around 10120, which is more than the 

number of atoms in the universe! To get an idea of how this number gets so big – the white pieces have 20 

options for the first move, and the black pieces has 20 options for the second move. After only this first 

play, there are 20 ⋅ 20 = 400 possibilities. Imagine how this increases after more moves! 

Fun Fact



Announcements

> HW1 due on Wednesday
   Q5 – the dishes should not be repeated

   Q6b – small typo in the point in the hint

> Remember to do concept checks! 

> Updated OH times posted later today/tomorrow morning



This is a fast-paced class! 

There’s a lot we cover in this class and the summer quarter is short. 

We’re here to help <3

- Office hours

- Post on the Edstem board

- Concept checks are helpful – try to do it right after each class

- Ask questions!!

- 1-1s with course staff (coming soon) + don’t hesitate to email me



Outline

So Far
Sum and Product Rules

Combinations and Permutations

Introduce ordering and remove it to make calculations easier

This Time

One final counting rule: Stars and Bars
Counting proofs!

> Combinatorial proofs (counting by two ways)

> Pigeonhole Principle

Broader takeaways

> How to tell what counting rule to apply

> How do I know we’re not over/undercounting?



Stars and Bars
The last counting rule in a while! :’) 



Donuts

You’re going to buy one-dozen donuts (i.e., 12 donuts) from chocolate, 
strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy?
> There are unlimited donuts of each type

> Donuts of the same type are indistinguishable

> Order of the donuts in the box does not matter

… …

What does it mean for the “donuts of the same 

type to be indistinguishable? 

If our dozen donuts includes 2 chocolate donuts, both 

outcomes on the left should be counted the same

(i.e., because items of the same type are indistinguishable, 

there’s only 1 way to pick 𝑘 donuts of a particular type)
Set of all chocolate donuts in the store



Donuts – an incorrect approach
You’re going to buy one-dozen donuts (i.e., 12 donuts)

There’s chocolate, strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy? Consider two boxes the 
same if they contain the same number of every kind of donut (o. 

Idea: 𝟓𝟏𝟐 because each of the 12 donuts have 5 options for its flavor?

Both the above outcomes are equivalent and should only be counted once!
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Donuts

You’re going to buy one-dozen donuts (i.e., 12 donuts) from chocolate, 
strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy?
> There are unlimited donuts of each type

> Donuts of the same type are indistinguishable

> Order of the donuts in the box does not matter

All we care about is how many donuts of each type are ordered



Donuts

You’re going to buy one-dozen donuts (i.e., 12 donuts) from chocolate, 
strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy?
> There are unlimited donuts of each type

> Donuts of the same type are indistinguishable

> Order of the donuts in the box does not matter

All we care about is how many donuts of each type are ordered

2 chocolate, 3 strawberry, 5 coconut, 1 blueberry, 1 lemon



Donuts

You’re going to buy one-dozen donuts (i.e., 12 donuts) from chocolate, 
strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy?
> There are unlimited donuts of each type

> Donuts of the same type are indistinguishable

> Order of the donuts in the box does not matter

We only need 𝟓 − 𝟏 = 𝟒 dividers to divide this set of 12 donuts into 𝟓 groups 

2 chocolate, 3 strawberry, 5 coconut, 1 blueberry, 1 lemon
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You’re going to buy one-dozen donuts (i.e., 12 donuts) from chocolate, 
strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy?
> There are unlimited donuts of each type

> Donuts of the same type are indistinguishable

> Order of the donuts in the box does not matter

2 chocolate, 3 strawberry, 5 coconut, 1 blueberry, 1 lemon

We only need 𝟓 − 𝟏 = 𝟒 dividers to divide this set of 12 donuts into 𝟓 groups 



Donuts

You’re going to buy one-dozen donuts (i.e., 12 donuts) from chocolate, 
strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy?
> There are unlimited donuts of each type

> Donuts of the same type are indistinguishable

> Order of the donuts in the box does not matter

We only need 𝟓 − 𝟏 = 𝟒 dividers to divide this set of 12 donuts into 𝟓 groups 

3 chocolate, 4 strawberry, 0 coconut, 2 blueberry, 3 lemon



Donuts

You’re going to buy one-dozen donuts (i.e., 12 donuts) from chocolate, 
strawberry, coconut, blueberry, and lemon (i.e. 5 types)

How many different donut boxes can you buy?

 1. Define an arbitrary ordering of the flavors (order doesn’t matter, so count only 1)
     in our example, our ordering is chocolate, strawberry, coconut, blueberry, lemon

2. Place bars between the donuts to demarcate flavor

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?

3 chocolate, 4 strawberry, 0 coconut, 2 blueberry, 3 lemon



Donuts

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?
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Donuts

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?

Approach 1:

This is a string rearranging problem! We have a string with 12 identical D’s 
(donuts) and 4 identical |’s (dividers) and are rearranging that word. 

e.g., “DDD|DDDD||DD|DDD”, DDDDDDDDDDDDD||||
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Donuts

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?

Approach 1:

This is a string rearranging problem! We have a string with 12 identical D’s 
(donuts) and 4 identical |’s (dividers) and are rearranging that word. 

e.g., “DDD|DDDD||DD|DDD”, DDDDDDDDDDDDD||||

1. Arrange letters in the string: 12 + 4 ! = 16!

2. Divide out overcounting for duplicate letters: 
16!

12!4!
= 16

12
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Donuts

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?

Approach 2:

There are  12 + 4 = 16 positions in total. 4 of these will be a divider and 
the remaining 12 will be donuts 



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Donuts

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?

Approach 2:

There are  12 + 4 = 16 positions in total. 4 of these will be a divider and 
the remaining 12 will be donuts 

1. Pick 12 of the 16 positions to be donuts: 16
12



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Donuts

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?

Approach 2:

There are  12 + 4 = 16 positions in total. 4 of these will be a divider and 
the remaining 12 will be donuts 

1. Pick 12 of the 16 positions to be donuts: 16
12

2. Pick 4 of the remaining 4 positions to be donuts:
4
4

= 1



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Donuts

So, our problem has been reduced to how many ways are there are assign 
these 4 dividers among the 12 donuts?

Approach 2:

There are  12 + 4 = 16 positions in total. 4 of these will be a divider and 
the remaining 12 will be donuts 

1. Pick 12 of the 16 positions to be donuts: 16
12

2. Pick 4 of the remaining 4 positions to be donuts:
4
4

= 1

16
12

 ways in total – same as with previous approach!



In General

This counting technique is often called “stars and bars” 
using a “star” instead of a donut shape, and calling the dividers “bars”

> What often hints to use the stars-and-bars approach is when we’re dealing with 
picking a set from objects where objects from the same types are indistinguishable

To pick 𝑛 objects from 𝑘 groups (where order doesn’t matter and 

every element of each group is indistinguishable), use the formula:

𝑛 + 𝑘 − 1

𝑛
=

𝑛 + 𝑘 − 1

𝑘 − 1

Stars and Bars



Proofs Using Counting Techniques



Combinatorial Proofs
Let’s first look at some combination facts…



Reminder - 𝑘-combination

The number of 𝒌-element subsets from a set of 𝒏 symbols is:

𝑪 𝒏, 𝒌 =
𝑛

𝑘
=

𝑷 𝒏, 𝒌

𝒌!
=

𝒏!

𝒌! 𝒏 − 𝒌 !

𝒌-combination



Some Facts about combinations

Here are some known facts about combinations: 

> Symmetry of combinations: 𝑛
𝑘

= 𝑛
𝑛−𝑘

> Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘



Some Facts about combinations

Here are some known facts about combinations: 

> Symmetry of combinations: 𝑛
𝑘

= 𝑛
𝑛−𝑘

> Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

How do we prove these equations are true? 



First Proof of Symmetry ( 𝑛
𝑘

= 𝑛
𝑛−𝑘

)

Proof 1: By algebra

𝑛
𝑘

=
𝑛!

𝑘! 𝑛−𝑘 !

      =
𝑛!

𝑛−𝑘 !𝑘!

       = 𝑛
𝑛−𝑘

 

Definition of Combination

Algebra (commutativity of multiplication)

Definition of Combination



First Proof of Symmetry ( 𝑛
𝑘

= 𝑛
𝑛−𝑘

)

Wasn’t that a great proof. 

Airtight. No disputing it.

Got to say “commutativity of multiplication.”

But…do you know why? Can you feel why it’s true?



Second Proof of Symmetry ( 𝑛
𝑘

= 𝑛
𝑛−𝑘

)

Both sides of this count the same set of outcomes! For example….

4
1

 →

LHS: choose 𝒌 things to 

include in the set 

 



Second Proof of Symmetry ( 𝑛
𝑘

= 𝑛
𝑛−𝑘

)

Both sides of this count the same set of outcomes! For example….

4
1

 →
4
3

 →

RHS: choose 𝐧 − 𝒌 things to 

not include in the set 

 

LHS: choose 𝒌 things to 

include in the set 

 



Second Proof of Symmetry ( 𝑛
𝑘

= 𝑛
𝑛−𝑘

)
more formal – combinatorial proof

Suppose you have 𝑛 people, and need to choose 𝑘 people to be on your 
team. We will count the number of possible teams two different ways. 

Way 1 (LHS): We choose the 𝑘 people to be on the team. Since order 
doesn’t matter (you’re on the team or not), there are 𝑛

𝑘
 possible teams.



Second Proof of Symmetry ( 𝑛
𝑘

= 𝑛
𝑛−𝑘

)
more formal – combinatorial proof

Suppose you have 𝑛 people, and need to choose 𝑘 people to be on your 
team. We will count the number of possible teams two different ways. 

Way 1 (LHS): We choose the 𝑘 people to be on the team. Since order 
doesn’t matter (you’re on the team or not), there are 𝑛

𝑘
 possible teams.

Way 2 (RHS): We choose the 𝑛 − 𝑘 people to NOT be on the team. 
Everyone else is on it. Since order again doesn’t matter, there are 𝑛

𝑛−𝑘
 

possible ways to choose the team. 



Second Proof of Symmetry ( 𝑛
𝑘

= 𝑛
𝑛−𝑘

)
more formal – combinatorial proof

Suppose you have 𝑛 people, and need to choose 𝑘 people to be on your 
team. We will count the number of possible teams two different ways. 

Way 1 (LHS): We choose the 𝑘 people to be on the team. Since order 
doesn’t matter (you’re on the team or not), there are 𝑛

𝑘
 possible teams.

Way 2 (RHS): We choose the 𝑛 − 𝑘 people to NOT be on the team. 
Everyone else is on it. Since order again doesn’t matter, there are 𝑛

𝑛−𝑘
 

possible ways to choose the team. 

Since we’re counting the same thing, the numbers must be equal.
So 𝑛

𝑘
= 𝑛

𝑛−𝑘
.



Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

algebraic proof



Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

combinatorial proof

Suppose you have 𝑛 people (one of which is Michael), and need to 
choose 𝑘 people to be on your team. 



Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

combinatorial proof

Suppose you have 𝑛 people (one of which is Michael), and need to 
choose 𝑘 people to be on your team. 

Way 1: There are 𝑛 people total, of which we’re choosing 𝑘 (and since it’s 
a team order doesn’t matter) 𝑛

𝑘
.



Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

combinatorial proof

Suppose you have 𝑛 people (one of which is Michael), and need to 
choose 𝑘 people to be on your team. 

Way 1: There are 𝑛 people total, of which we’re choosing 𝑘 (and since it’s 
a team order doesn’t matter) 𝑛

𝑘
.

Way 2: There are two types of teams. Those for Michael makes the team, 
and those for Michael does not. 
If Michael does make the team, then 𝑘 − 1 of the other 𝑛 − 1 also make it. 

If Michael doesn’t make the team, 𝑘 of the other 𝑛 − 1 are on the team.

Overall, by sum rule, 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

.

Since we’re computing the same number two different ways, they must 

be equal. So: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘



Combinatorial Proofs

1. Describe a scenario

2. Explain how the LHS counts the outcomes in that scenario

3. Explain how the RHS counts the outcomes in that same scenario

4. State that “because the LHS and RHS both count the number of 
outcomes in the same scenario, they must be equal”



Combinatorial Proofs

1. Describe a scenario

2. Explain how the LHS counts the outcomes in that scenario

3. Explain how the RHS counts the outcomes in that same scenario

4. State that “because the LHS and RHS both count the number of 
outcomes in the same scenario, they must be equal”

When to use?

> Algebraic proofs are often difficult and don’t give us an “intuitive” 

reason for why the equation holds

> Combinatorial proofs are used for proving an equation that may 

involve combinations, factorials, permutations, etc.



Combinatorial Proofs – tips!

> Start with the side that “looks simpler” 

> Multiplying terms together indicates some sequential 
process (the product rule)

> A summation/adding terms indicates some disjoint cases 
that are added together using the sum rule



Pigeonhole Principle
A counting property that will be helpful in many proofs! 



A Hairy Question

Are there at least two people in Seattle with the same number of hairs 
on their head?

A. Yes

B. No

C. How would I know?

Go to pollev.com/cse312 

(login with your UW identity)



Pigeonhole Principle

If you have 5 pigeons, and place them into 4 holes, then…



Pigeonhole Principle

If you have 5 pigeons, and place them into 4 holes, then…

At least 2 pigeons are in the same hole. 



Pigeonhole Principle

If you have 5 pigeons, and place them into 4 holes, then…

At least 2 pigeons are in the same hole. 



Pigeonhole Principle

Version 1

If you have 𝒏 pigeons, and place them into 𝒌 holes, and 𝒏 > 𝒌, then 

at least 2 pigeons are in the same hole.

Pigeonhole Principle

Note: we’re not making guarantees about every pigeonhole – we’re just guaranteeing 

that there is at least one hole with at least a certain number of pigeons



Pigeonhole Principle

Version 1

If you have 𝒏 pigeons, and place them into 𝒌 holes, and 𝒏 > 𝒌, then 

at least 2 pigeons are in the same hole.

Version 2 (generalized)

If you have 𝒏 pigeons, and place them into 𝒌 holes, and 𝒏 > 𝒌, then 

at least 
𝑛

𝑘
 pigeons are in the same hole.

Pigeonhole Principle

Note: we’re not making guarantees about every pigeonhole – we’re just guaranteeing 

that there is at least one hole with at least a certain number of pigeons



Pigeonhole Principle (generalized)

If you have 𝑛 pigeons and 𝑘 pigeonholes, then there is at least one 

pigeonhole that has at least 
𝑛

𝑘
 pigeons.

𝑎  is the “ceiling” of 𝑎 (it means always round up, 1.1 = 2, 1 = 1).

e.g., 5 pigeons and 4 holes -> at least 1 hole has 
5

4
= 1.25 = 2 pigeons



An example

If you have to take 10 classes, and have 3 quarters to take them in, 
then…

Pigeons: The classes to take

Pigeonholes: The quarter

Mapping: Which class you take the quarter in 
(each class will be assigned to exactly 1 quarter)

Applying the pigeonhole principle, there is at least one quarter where 

you take at least 
10

3
= 4 courses.



An example

If you have to take 10 classes, and have 3 quarters to take them in, 
then…

Pigeons: The classes to take

Pigeonholes: The quarter

Mapping: Which class you take the quarter in 
(each class will be assigned to exactly 1 quarter)

Applying the pigeonhole principle, there is at least one quarter where 

you take at least 
10

3
= 4 courses.

Remember!

When defining pigeons and 

pigeonholes, every pigeon 

must be assigned to one 

pigeonhole 



Practical Tips

1. What are the pigeons?

2. What are the pigeonholes?

3. How do you map from pigeons to pigeonholes?

4. There are 𝑛 pigeons and 𝑘 pigeonholes, so by pigeonhole principle, 

there is at least 1 pigeonhole with at least 
𝑛

𝑘
 pigeons. This is what we’re 

trying to prove because… 



Practical Tips

1. What are the pigeons?

2. What are the pigeonholes?

3. How do you map from pigeons to pigeonholes?

4. There are 𝑛 pigeons and 𝑘 pigeonholes, so by pigeonhole principle, 

there is at least 1 pigeonhole with at least 
𝑛

𝑘
 pigeons. This is what we’re 

trying to prove because… 

When to use pigeonhole principle? 

> When we’re trying to prove or make some guarantee about a 

certain number of things sharing some property. 

> We’ll usually warn you in advance that pigeonhole principle the 

right method (you’ll see one in the section handout).



Practical Tips

Look for – a set you’re trying to divide into groups, where collisions 
would help you somehow.

“Prove that there are at least x A’s that have the same B”

> Pigeons: all possibles A’s

> Pigeonholes: all possible B’s

> Mapping: each A is assigned to one possible B

The pigeonhole principle tells us that there are at least x pigeons that fall 
into the same hole -> there are at least x A’s that have the same B



Back to the hairy question….

Are there at least two people in Seattle with the same number of hairs on 
their head?

Pigeons: All people in Seattle
750,000 people in Seattle (750,000 pigeons)

Pigeonholes: All possible ‘hair counts’ -> ~
people have up to 150,000 hairs on their head (150,000 pigeonholes)

Mapping: Every person is “assigned” to a particular hair count

By the pigeonhole principle, there are at least 
750,000

150,000
= 5 pigeons in the 

same pigeonhole -> at least 5 people in Seattle with the same hair count!



But actually…what’s the point of this? 

• We can prove some pretty fun statements! 

• Hashing Algorithms: Ensuring that collisions will occur when hashing 
more items than there are available hash slots, which helps in designing 
effective collision resolution strategies. (you’ll learn about hashing in 332!)

• Resource Allocation: Ensuring that in systems with more requests than 
resources, some resources will be shared (e.g., tasks and processors)

• Data Compression: Demonstrating that lossless compression of 
sufficiently large files must lead to some files being larger after 
compression due to limited encoding space

•  It is also the basis of proving that a language is not regular, as you may 
remember from 311!



Thinking about Counting



We’ve seen lots of ways to count

Sum rule (split into disjoint sets)

Product rule (use a sequential process)

Combinations (order doesn’t matter)

Permutations (order does matter)

Principle of Inclusion-Exclusion (counting the size of a union of sets)

Complementary Counting (counting the ways for something to not occur)

 “Stars and Bars” 𝑛+𝑘−1
𝑘−1

 (assigning indistinguishable stars to distinguishable bins)

Niche Rules (useful in very specific circumstances) 
Binomial Theorem

Pigeonhole Principle



How to tell which approach(es) to take?

• Identify keywords in the problem, and key properties, and think about 
what techniques match those patterns

• If an approach isn’t working or things are getting out of control, try a 
different approach!

• There are often multiple ways to solve the same problem ☺ 

• In some harder problems, we might need to start by solving a 
simplified version of the problem and then dividing/subtracting out 
overcounting (we’ll see an example of this now!)

This all takes practice so don’t be hard on yourself if you don’t think of 
the correct answer at first glance!! 



How to tell which approach(es) to take?

> Can we break this into some disjoint cases? (sum rule)

> Can we create our desired outcomes with a clear sequential process? 
(product rule)

> Are we counting the ways for something not to occur? (complementary 
counting)

> Are we dealing with the union of some sets? (inclusion-exclusion)

> Does order matter or not in this problem? (permutation or combination)

> Are the objects distinguishable or indistinguishable (stars and bars if 
indistinguishable)

These approaches often work together! E.g., to compute the number of 
options in one of the disjoint cases, you may need another approach



More examples
Putting it all together! 



Cards
A lot of counting problems deal with cards! 

A “standard” deck of cards has 52 cards (13 ⋅ 4 = 52). 

Each card has one of 4 suits
diamonds , 

hearts , 

clubs ♧, 

spades 

and one of 13 values/ranks (Ace,2,3,4,5,6,7,8,9,10,Jack,Queen, King). 

e.g., Ace , 5 , 5♧, 10  are all possible cards

A “𝑘-card-hand” is an unordered set of 𝑘 cards



Cards
A lot of counting problems deal with cards! 

A “standard” deck of cards has 52 cards (13 ⋅ 4 = 52). 

Each card has one of 4 suits
diamonds , 

hearts , 

clubs ♧, 

spades 

and one of 13 values/ranks (Ace,2,3,4,5,6,7,8,9,10,Jack,Queen, King). 

e.g., Ace , 5 , 5♧, 10  are all possible cards

A “𝑘-card-hand” is an unordered set of 𝑘 cards

How many five-card “flushes” are there? – a flush is a hand of cards all of the 
same suit. (e.g., {A , 3 , 5 , 6 , Q })

Go to pollev.com/cse312



Five-card “flushes”

How many five-card “flushes” are there? – a flush is a hand of cards all of 
the same suit. 
Think: How would I create a set of cards that is a flush? 

Way 1: 

1. Pick the suit (e.g., ) – 𝟒
𝟏

2. Pick the specific values/cards from that suit (e.g., {A,3,5,6,Q}) - 𝟏𝟑
𝟓

Now we’ve created an unordered 5-card flush! (e.g., {A , 3 , 5 , 6 , Q })

4
1

⋅ 13
5



Five-card “flushes”

Way 2: 

Pretend order matters. 

1. Pick any first card – 52 options

2. All remaining cards must be from the same suit of that first suit: 
 12 options for the 2nd card, 11 options for the 3rd card, etc. 

Divide out the overcounting - divide by 5!, since order isn’t supposed to 
matter (i.e., only count each unordered flush once)

52⋅12⋅11⋅10⋅9

5!

This equals the same number as what we got on the last slide!



How many 5-card hands have at least 3 aces?

There are 4 Aces (and 48 non aces) in a deck of cards

1. Choose 𝟑 aces: 4
3

2. Then pick 𝟐 of the 𝟒𝟗 remaining cards to form a 5(the last ace is 

allowed as well, because we’re allowed to have all 4): 49
2

4
3

⋅ 49
2

What’s wrong with this calculation? Does it,

A) Overcount B) Undercount C) It’s correct! D) I have no idea :)

Go to pollev.com/cse312



Sleuth’s Criterion
How to check if we counted correctly?

For each outcome that we want to count, there should be exactly one 
set of choices in the sequential process that will lead to that outcome. 

> If there are no sequence of choices that will lead to the outcome, we 
have undercounted.

> If there is more than one sequence of choices that will lead to the 
outcome, we have overcounted. 



Sleuth’s Criterion (in context)
How to check if we counted correctly?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

> If there are no sequence of choices that will lead to a particular 5-card 
hand with at least 3 aces, we have undercounted.

> If there is more than one sequence of choices that will lead to a 
particular 5-card hand with at least 3 aces, we have overcounted. 



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , Q , K  is a valid outcome should counted exactly once. 

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {Q , K }

Great! There’s no other set 
of choices that will lead to 
this hand.



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , A , K  is a valid outcome should counted exactly once. 
But…

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , A , K  is a valid outcome should counted exactly once. 
But…

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }

Both of these are different 
choices in the sequential 
process and are counted 
separately, but they are 
the same hand!

This is overcounting  



Fixing The Overcounting



How many 5-card hands have at least 3 aces?

Way 1: We could start with our incorrect solution & subtract the 
overcounting.

What kinds of hands do we overcount (counted many times in the 
sequential process)?

> 5-card hands with 4 Aces (i.e., a hand like {A♧, A , A , A , X})

Our original incorrect solution:

1. Choose 𝟑 aces: 4
3

, 2. Then pick 𝟐 of the 𝟒𝟗 remaining cards: 49
2
→

4
3

⋅ 49
2



How many 5-card hands have at least 3 aces?

Way 1: We could start with our incorrect solution & subtract the overcounting.

 

What kinds of hands do we overcount (counted many times in the sequential process)?

> 5-card hands with 4 Aces (i.e., a hand like {A♧, A , A , A , X})

> This hand is counted 4 different times (each row below is a different set of choices)

{A♧, A , A }, {A , X}

{A♧, A , A }, {A , X}

{A♧, A , A }, {A , X}

{A , A , A }, {A♧, X}

Our original incorrect solution:

1. Choose 𝟑 aces: 4
3

, 2. Then pick 𝟐 of the 𝟒𝟗 remaining cards: 49
2
→

4
3

⋅ 49
2



How many 5-card hands have at least 3 aces?

Way 1: We could start with our incorrect solution & subtract the overcounting.

 

What kinds of hands do we overcount (counted many times in the sequential process)?

> 5-card hands with 4 Aces (i.e., a hand like {A♧, A , A , A , X})

So, how many outcomes are overcounted? 

 >There are 4
4

⋅ 48 = 48 5-card hands with all 4 Aces

> Each of these hands is counted 4 times, but we only want to count it once

> So we’ve counted 4 − 1 ⋅ 48 = 3 ⋅ 48 processes that shouldn’t count.

That would give a corrected total of 4
3

⋅ 49
2

− 3 ⋅ 48

Our original incorrect solution:

1. Choose 𝟑 aces: 4
3

, 2. Then pick 𝟐 of the 𝟒𝟗 remaining cards: 49
2
→

4
3

⋅ 49
2

{A♧, A , A }, {A , X}
{A♧, A , A }, {A , X}
{A♧, A , A }, {A , X}
{A , A , A }, {A♧, X}



How many 5-card hands have at least 3 aces?

Way 1: We could subtract out the overcounting - count exactly which hands 
are overcounted in our sequential process, and how many times each of 
those hands are overcounted, and subtract that from our initial count. 

4

3
⋅

49

2
− 3 ⋅ 52

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 



How many 5-card hands have at least 3 aces?

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 

Does this overcount/undercount?
For a valid outcome, there should be exactly 1 set of choices leading to that outcome:

A♧, A , A , Q ♧, K  - this will fall under the first case. The only possible set of 

choices leading to this is {A♧, A , A } in the 1st step and {Q ♧, K } in the 2nd



How many 5-card hands have at least 3 aces?

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 

Does this overcount/undercount?
For a valid outcome, there should be exactly 1 set of choices leading to that outcome:

A♧, A , A , A , K  - this will fall under the second case. The only possible set of 

choices leading to this is {A♧, A , A , A } in the 1st step and {K } in the 2nd



Another Problem!



A Fruit Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas. Fruits of the same type are indistinguishable.

You need to pick at most 2 apples and at least 1 banana. How many sets 
of fruit can you choose?



A Fruit Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas. Fruits of the same type are indistinguishable. You need to pick 
at most 2 apples and at least 1 banana. How many sets of fruit can you 
choose?

Divide into disjoint cases based on number of apples:

0 apples: 

1 apple: 

2 apples: 

__ total (by sum rule)



A Fruit Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas. Fruits of the same type are indistinguishable. You need to pick 
at most 2 apples and at least 1 banana. How many sets of fruit can you 
choose?

Divide into disjoint cases based on number of apples:

0 apples: 1 to 8 bananas possible (8 options)

1 apple: 1 to 7 bananas possible (7 options)

2 apples: 1 to 6 bananas possible (6 options) 

21 total (by sum rule)



A Fruit Problem (another approach)

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas. Fruits of the same type are indistinguishable. You need to pick at 
most 2 apples and at least 1 banana. How many sets of fruit can you 
choose?

Divide into disjoint cases based on number of apples:

0 apples: Pick 1 banana, select banana/orange for remaining: 7+2−1
2−1

= 8

1 apple: Pick 1 banana, select banana/orange for remaining: 6+2−1
2−1

= 7

2 apples: Pick 1 banana, select banana/orange for remaining: 5+2−1
2−1

= 6

21 total (by sum rule)



A Fruit Problem (and another approach!)

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas. Fruits of the same type are indistinguishable. You need to pick 
at most 2 apples and at least 1 banana. How many sets of fruit can you 
choose?

1. Pick out your first banana – 1 option because indistinguishable

2. Pick 7 fruits (at most 2 apples, can take apples oranges / bananas)
   Complementary counting: 

   Total possibilities ignoring apple restriction: 7+3−1
3−1

 (7 pieces, 3 types)

   Possibilities with ≥ 3 apples (these are the outcomes we want to exclude)
4+3−1

3−1
. Pick 3 apples (1 options bc indistinguishable), pick 4 from 3 types

Total: 9
2

− 6
2

= 36 − 15 = 21



Takeaways

For donut-counting style problems with “twists”, it sometimes helps to 
“just throw the first few in the box” to get a problem that is exactly in 
the donut-counting framework.

There are often many ways to do the same problem! When you can do 
a problem two very different ways and get the same answer, you get 
much more confident in the answer.
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