PERMUTATIONS: $P(n, k)$ ways to make an
ordered sequence of k from a group of n
COMBINATIONS: C($n, k)$ ways to make an
unordered subsets of k from a group of n
INCLUSION-EXCLUSION:
$|A \cup B \cup C \cup .|=$. singles - doubles + triples -

Applications/Extensions:
BINOMIAL THEOREM: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$
Common Counting Strategy:

1. count simplifed problem (e.g., order matters)
2. divide/subtract out overcounting

K-PERMUTATIONS (ORDER MATTERS)
The number of k-element sequences of distinct symbols from a universe \mathbf{n} symbols is: $P(n, k)$ e.g., How many ways to arrange 3 people from a group of 20 people in a line for a picture?

K-COMBINATIONS (ORDER DOESN'T MATTER)
The number of k-element subsets from a set of n symbols is: $C(n, k)=P(n, k) / k!$ e.g., How many ways to arrange 3 people from a group of 20 people to stand in a line for a picture?

Where does this formula come from?

How many different paths are there? Each step is either right or up.
-BINOMIAL THEOREM
$(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$
Used when expanding a polynomial; finding coefficient of a term For each monomial, $\binom{n}{i}$ ways to choose which n terms the x is from and $\binom{n-i}{n-i}=1$ ways to choose the which terms the y is from

REARRANGING WITH SOME DUPLICATES

How many anagrams are there of SEATTLE?
lst (incorrect) approach:
7 ! because rearranging 7 letters?
but this counts:
SEATTLE and SEATTLE and different

2nd (correct) approach:
1.Pretend all the letters are distinct (e.g., El different from E2):
2. Divide out overcounting.

Useful counting technique:
 With a more complex problem that can't be directly
 solved with one of the counting rules, we might:
 1. Count options of a simplified version of problem
 2. Divide out/subtract any overcounted outcomes

3rd (correct) approach:
l. Pick positions for the 2 E's:
2. Pick positions for the 2 T's:
3. Pick letters for remaining positions:

ANOTHER COUNTING RULE

PRINCIPLE OF INCLUSION-EXCLUSION

SUM RULE:

Number of ways for A and B if they don't overlap is $|A|+|B|$ $|A \cup B|=|A|+|B|$ if $|A \cap B|=0$

What if they overlap?
$|A \cup B|=|A|+|B|-|A \cap B|$ remove overcounting

What if there are 3 sets?
notes...
$|A \cup B \cup C|=$
$|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C|$
in general....
$|A \cup B \cup C|=$ singles - doubles + triples -

How many length 5 strings over the alphabet $\{a, b, c, \ldots, z\}$ contain:
Exactly 2 'a's OR Exactly 1 'b' OR No 'x's ---- the "OR" hints at a union!
Step 1: Define relevant sets: A ~ set of length 5 strings with exactly 2 a's, B ~ set of length 5 strings with exactly 1 b, C ~ set of length 5 strings with no x's
Step 2: Write what we're looking for: $\mid \mathrm{A} \cup \mathrm{B} \cup \mathrm{Cl}-->$ we can use inclusion-exclusion!
Step 3: List out all terms we need to compute, solve, and plug back into expression

$\|A\|=$ ____-	$\|\mathrm{A} \cap \mathrm{B}\|=$ ____-_	$\|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}\|=\ldots \ldots$
$\|\mathrm{B}\|=$ _-_---	$\|\mathrm{B} \cap \mathrm{C}\|=$ _----	
$\|C\|=\ldots \ldots$	$\mid \mathrm{A} \cap \mathrm{Cl}$ = __-_-	

