
More Counting! 
CSE 312 23Su

Lecture 2

There are 52! ≈ 8 ⋅ 1067 possible arrangements of a deck of 52 cards. So, when you 

shuffle a deck of cards, the resulting order has likely never been seen before! 

Fun Fact



Announcements

Homework 1 was released, due next Wednesday (6/26)

> All content for the homework will be covered by today’s lecture

> Collaboration is encouraged (!) but follow collaboration policy (syllabus)
   Fill out study group finding form posted on Ed if you’d like to

> Justify your answers! We want to see your thought process

> Coding question

> We’re here to help! 
  Office hour schedule posted on the course website

  Edstem discussion board



Announcements

You’ll have 7 late days to use for the quarter.

At most 2 late days per assignment.

Late days are for “normal” things during the quarter

If you have an unusual or extended or extreme issue, please let us 
know.

The sooner you let us know, the more options we have for 
accommodations.



Where Are We?

Last time:
Sum and Product Rules

Complementary Counting

Permutations and Combination

Today:

More about combinations

Applications of combinations – path counting, binomial theorem

Inclusion-Exclusion



Recap: 𝑘-permutation

Said out loud as “P n k” or “n permute 𝑘” or “n pick k”

Alternative notation: 𝑛𝑃𝑘

Edge cases: 𝑃 𝑛, 𝑛 = 𝑛!, 𝑃 𝑛, 0 = 1, 𝑃(𝑛, 𝑘) for 𝑘 < 0 or 𝑘 > 𝑛 is undefined.

The number of 𝒌-element sequences of distinct symbols 

from a universe of 𝒏 symbols is:

𝑷 𝒏, 𝒌 = 𝒏 ⋅ 𝒏 − 𝟏 ⋯ 𝒏 − 𝒌 + 𝟏 =
𝒏!

𝒏 − 𝒌 !

𝒌-permutation

Examples:

• Ordering k people from a group of n people in a line

• Assigning k players from a team of n to k different positions (so order 

matters)

• Awarding gold, silver, and bronze medal among n participants - 𝑃(𝑛, 3)



Picture Time 

How many ways to arrange 3 people from a group of 20 people (A,B,C,…) 
to stand in a line for a picture?  

 this means that ABC, CBA, BCD, etc. are all counted as different outcomes

Creating an ordered sequence of people with no repeats -> permutation

𝑃 20,3 = 20 ⋅ 19 ⋅ 18 because we are creating an ordered sequence of 3 
people from a larger group of 20 people



Picture Time  (but change it slightly)

How many ways to select 3 people from a group of 20 people (A,B,C,…) to 
be in a picture, but we don’t care about the order they stand in?  

 this means ABC, CDF, BCD, etc. are all counted as different outcomes, but 
ABC, BCA,CBA, etc. are counted as the same outcome

Same as before but now we do not care about order! 

Looking for the number of possible subsets of 3 from the group of 20



Clever approach – count two ways

Let’s go back to the first problem, where order mattered.

The total options was 𝑃 20,3 =
20!

20−3 !

How else could we get an ordered list? With this sequential process:

Step 1: Choose a subset of 3 people. Let’s say there are 𝑥 options for this 

Step 2: Put the subset in order. 3! ways to arrange 3 people



Clever approach – count two ways

Let’s go back to the first problem, where order mattered.

The total options was 𝑃 20,3 =
20!

20−3 !

How else could we get an ordered list? With this sequential process:

Step 1: Choose a subset of 3 people. Let’s say there are 𝑥 options for this 

Step 2: Put the subset in order. 3! ways to arrange 3 people

Both approaches better give us the same number, so:

𝑃 20,3 =
20!

20−3 !
= 𝑥 ⋅ 3! So the number of size-5 subsets of a size-20 set is:

𝑥 =
𝑃 20,3

3!
=

20!

20 − 5 ! 5!



Number of Subsets - 𝑘-combination

Said out loud “n choose k” (or sometimes: “n combination k”)

Lots of notation:

𝑛𝐶𝑘  or 𝑛
𝑘

 or 𝐶(𝑛, 𝑘) all mean “number of size-𝑘 subsets of a size-𝑛 set.”

Edge cases: 𝑛
0

= 1, 𝑛
𝑛

= 1; 𝑛
𝑘

 for 𝑘 < 0 or 𝑘 > 𝑛 is undefined.

The number of 𝒌-element subsets from a set of 𝒏 

symbols is:

𝑪 𝒏, 𝒌 =
𝑷 𝒏, 𝒌

𝒌!
=

𝒏!

𝒌! 𝒏 − 𝒌 !

𝒌-combination

How many ways to select 5 people from a group of 20 people (A,B,C,…) to be in a 

picture, but we don’t care about the order they stand in?  

Here, we’re only interested in the unordered subsets, so we use a combination:

𝑪 𝟐𝟎, 𝟓



Another approach for deriving k-combinations

The second way of counting hints at a generally useful trick:

(1) Pretend that order does matter, then (2) divide by the number of orderings of the parts 
where order doesn’t matter.

Here’s another way to get the formula for combinations (choosing a subset of size k from a 
universe of n elements):

1. Put the 𝑛 elements in some order. The first 𝑘 are in the desired set. (𝑛!)
      e.g., n=7, k=3

A B C D E F G



Another approach for deriving k-combinations

The second way of counting hints at a generally useful trick:

(1) Pretend that order does matter, then (2) divide by the number of orderings of the parts 
where order doesn’t matter.

Here’s another way to get the formula for combinations (choosing a subset of size k from a 
universe of n elements):

1. Put the 𝑛 elements in some order. The first 𝑘 are in the desired set. (𝑛!)

A B C D E F G

2. Among the first 

𝑘, order doesn’t 

matter between 

them. Divide by 𝑘!.

2. Among the last 𝑛 −
𝑘, order doesn’t 

matter between them. 
Divide by 𝑛 − 𝑘 !.

𝑛!

𝑘! 𝑛 − 𝑘 !



Path Counting 



Path Counting
We’re in the lower-left corner, and 
want to get to the upper-right corner.

Each step either goes right or up.

How many different paths are there?

A. 28

B. 𝑃 8,4

C. 8
4

D.Something else

Fill out the poll everywhere so Claris knows 

how much to explain

Go to pollev.com/cse312 and login with your 

UW identity



Path Counting
Go from lower-left corner to the upper-right corner.

Each step either goes right or up.

We’re going to take 8 steps. 

Maybe…28 options because on each 

step we either go right or up?

Move 1: (R/U) 2  Move 5: (R/U) 2
Move 2:(R/U) 2  Move 6: (R/U) 2
Move 3: (R/U) 2  Move 7: (R/U) 2
Move 4: (R/U) 2  Move 8: (R/U) 2



Path Counting
Go from lower-left corner to the upper-right corner.

Each step either goes right or up.

We’re going to take 8 steps. 

Maybe…28 options because on each 

step we either go right or up?

But this includes paths that don’t take 

us to the goal! 

Move 1: (R/U) 2  Move 5: (R/U) 2
Move 2:(R/U) 2  Move 6: (R/U) 2
Move 3: (R/U) 2  Move 7: (R/U) 2
Move 4: (R/U) 2  Move 8: (R/U) 2



Path Counting
Go from lower-left corner to the upper-right corner.

Each step either goes right or up.

We’re going to take 8 steps. 

Exactly 4 of the steps must be up and 

the rest to the right to reach the goal

Move 1:   Move 5: 

Move 2:   Move 6: 

Move 3:   Move 7: 

Move 4:   Move 8: 



Path Counting
Go from lower-left corner to the upper-right corner.

Each step either goes right or up.

We’re going to take 8 steps. 

Exactly 4 of the steps must be up and 

the rest to the right to reach the goal

E.g. {1,2,7,8} 

Move 1: ↑   Move 5: → 
Move 2: ↑   Move 6: → 
Move 3: →   Move 7: ↑ 
Move 4: →   Move 8: ↑



Path Counting
Go from lower-left corner to the upper-right corner.

Each step either goes right or up.

We’re going to take 8 steps. 

Exactly 4 of the steps must be up and 

the rest to the right to reach the goal

E.g. {2,4,5,7} 

Move 1: →   Move 5: ↑ 

Move 2: ↑   Move 6: → 
Move 3: →   Move 7: ↑ 
Move 4: ↑   Move 8: → 



Path Counting
Go from lower-left corner to the upper-right corner.

Each step either goes right or up.

We’re going to take 8 steps. 

Exactly 4 of the steps must be up and 

the rest to the right to reach the goal

Choose which SET of 4 of the moves 

will be up (the others will be right).

How many size-4 subsets of 

{1,2,3,4,5,6,7,8} are there?

 
8
4

 is the answer.



Binomial Theorem
another application of combinations!



Binomial Theorem

In high school you might have memorized 

𝑥 + 𝑦 2 = 𝑥2 + 2𝑥𝑦 + 𝑦2

And 𝑥 + 𝑦 3 = 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3 

The Binomial Theorem tells us what happens for every 𝑛:

𝑥 + 𝑦 𝑛 = 

𝑖=0

𝑛
𝑛

𝑖
𝑥𝑖𝑦𝑛−𝑖

The Binomial Theorem
𝑥 + 𝑦 𝑛 = (𝑥 + 𝑦)(𝑥 + 𝑦) (𝑥 + 𝑦)…(𝑥 + 𝑦)



Binomial Theorem

In high school you might have memorized 

𝑥 + 𝑦 2 = 𝑥2 + 2𝑥𝑦 + 𝑦2

And 𝑥 + 𝑦 3 = 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3 

The Binomial Theorem tells us what happens for every 𝑛:

𝑥 + 𝑦 𝑛 = 

𝑖=0

𝑛
𝑛

𝑖
𝑥𝑖𝑦𝑛−𝑖

The Binomial Theorem 𝑥 + 𝑦 𝑛 = (𝑥 + 𝑦)(𝑥 + 𝑦) (𝑥 + 𝑦)…(𝑥 + 𝑦)

𝑦𝑛 +
𝑛

1
𝑥1𝑦𝑛−1 +

𝑛

2
𝑥2𝑦𝑛−2 + ⋯ + 𝑥𝑛



Some intuition

Intuition: Every monomial on the right-hand-side has either 𝑥 or 𝑦 from 
each of the terms on the left. 

How many copies of 𝑥𝑖𝑦𝑛−𝑖 do you get? Well how many ways are there 
to choose 𝑖 𝑥’s and 𝑛 − 𝑖 𝑦’s? 𝑛

𝑖
.

Formal proof? Induction!

𝑥 + 𝑦 𝑛 = 

𝑖=0

𝑛
𝑛

𝑖
𝑥𝑖𝑦𝑛−𝑖

The Binomial Theorem



So What?

Well…if you saw it before, now you have a better understanding now of 
why it’s true. 

There are also a few cute applications of the binomial theorem to 
proving other theorems (usually by plugging in numbers for 𝑥 and 𝑦) – 
you’ll do one on HW1.

For example, set 𝑥 = 1 and 𝑦 = 1 then 

2𝑛 = 1 + 1 𝑛 = σ𝑖=0
𝑛 𝑛

𝑖
1𝑖1𝑛−𝑖 = σ𝑖=0

𝑛 𝑛
𝑖

.

i.e. if you sum up binomial coefficients, you get 2𝑛. 



What if there are some duplicate/identical 
items and the rest are distinct? 



Rearranging Distinct Elements

How many anagrams are there of COMPUTER?

(an anagram is a rearrangement of letters). 

There are 8! ways to rearrange these 8 distinct letters

Factorial – there are 8 options for the first letter, 7 for the second, etc.



Rearranging Distinct Elements

How many anagrams are there of COMPUTER?

(an anagram is a rearrangement of letters). 



Rearranging With Duplicates

How many anagrams are there of SEATTLE?

(an anagram is a rearrangement of letters). 

Maybe 7! we are rearranging 7 letters?  

That treats all 7 letters as distinct and counts SEATTLE, SEATTLE as 
different things!

I swapped the Es (or maybe the Ts)



Rearranging With Duplicates (approach 1)

How many anagrams are there of SEATTLE?

1. Pretend all the letters are distinct (e.g., E1 different from E2)
 How many arrangements of SE1AT1T2LE2?  7!

2. Divide out overcounting. Each distinct anagram (e.g., SEATTLE) is 
counted 2! ⋅ 2! times because of ordering the E’s and ordering the T’s
 Divide by 2! ⋅ 2! so that each distinct anagram is counted exactly once

 

Final answer 
7!

2!⋅2!



Rearranging With Duplicates (approach 2) 

How many anagrams are there of SEATTLE?

1. Pick positions for the 2 E’s. 7
2

 because the E’s are identical
    (e.g., {2, 5} ->  __ E __ __ E __ __)

2. Pick positions for the 2 T’s. 5
2

 because the T’s are identical
   (e.g., {1, 3} ->  T E T __ E __ __)

3. Pick positions for the remaining distinct letters. 3! = 3 ⋅ 2 ⋅ 1
 3 options for position for S, 2 options for the A, 1 option for the L

    (e.g., 4, 7, 6 ->  T E T S E L A)

7

2
⋅

5

2
⋅ 3 ⋅ 2 ⋅ 1 =

7!

5! 2!
⋅

5!

3! 2!
⋅ 3! =

7!

2! 2!
 



Rearranging With Duplicates

What we’re doing here is something can be done with 

multinomial coefficients. We won’t cover that directly in 

this class, but feel free ask to me about / look it up on your 

own time! 

Regardless, you should understand the approach taken in 

this problem :)



Principle of Inclusion-Exclusion



Recall: Sum Rule

How many options do I have for lunch?

I could go to Delfino’s where there are 𝟔 pizzas I choose from, or I 
could go to Supreme where there are 4 pizzas I choose from (and none 
of them are the same between the two).

How many total choices?

6 + 4 = 10

Sum Rule: If you are choosing one thing between 𝑛 options in one group and 

𝑚 in another group with no overlap, the total number of options is: 𝑛 + 𝑚.



Recall: Sum Rule

𝑨 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∪ 𝐵 = 𝐴 + 𝐵 = 10 because 𝑨 and 𝑩 do not overlap (i.e., 𝐴 ∩ 𝐵 = 0)



What if the sets overlap?

𝑨 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∩ 𝐵 ~ set of pizzas in both Delfino’s and Supreme → 𝐴 ∩ 𝐵 = 2

But what if there are 

some pizzas that are 

sold in both Delfino's 

and Supreme? 

i.e., what if 𝐴 and 𝐵 

overlap and 𝐴 ∩ 𝐵 > 0? 

𝑨 ∩ 𝑩



What if the sets overlap?

𝑨 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∩ 𝐵 ~ set of pizzas in both Delfino’s and Supreme → 𝐴 ∩ 𝐵 = 2

𝑨 ∩ 𝑩



What if the sets overlap?

𝑨 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∩ 𝐵 ~ set of pizzas in both Delfino’s and Supreme → 𝐴 ∩ 𝐵 = 2

Let’s start by adding the 

options from Delfino’s 

and Supreme… 6 + 4

𝑨 ∩ 𝑩



What if the sets overlap?

𝑨 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∩ 𝐵 ~ set of pizzas in both Delfino’s and Supreme → 𝐴 ∩ 𝐵 = 2

Let’s start by adding the 

options from Delfino’s 

and Supreme… 6 + 4

𝑨 ∩ 𝑩



What if the sets overlap?

𝑨 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∩ 𝐵 ~ set of pizzas in both Delfino’s and Supreme → 𝐴 ∩ 𝐵 = 2

Let’s start by adding the 

options from Delfino’s 

and Supreme… 6 + 4

𝑨 ∩ 𝑩



What if the sets overlap?

𝑨 𝑩

This region 𝑨 ∩ 𝑩 has been counted twice! 

Let’s start by adding the 

options from Delfino’s 

and Supreme… 6 + 4

𝑨 ∩ 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∩ 𝐵 ~ set of pizzas in both Delfino’s and Supreme → 𝐴 ∩ 𝐵 = 2



What if the sets overlap?

𝑨 𝑩

This region 𝑨 ∩ 𝑩 has been counted twice! 

Let’s start by adding the 

options from Delfino’s 

and Supreme… 6 + 4

Then we subtract out 

𝐴 ∩ 𝐵 = 2 because we 

want to region counted 

exactly once. 

𝑨 ∪ 𝑩 = 𝟔 + 𝟒 − 𝟐

𝑨 ∩ 𝑩

𝐴 ~ set of pizzas from Delfino’s → 𝐴 = 6

𝐵 ~ set of pizzas from Supreme → 𝐵 = 4

𝐴 ∩ 𝐵 ~ set of pizzas in both Delfino’s and Supreme → 𝐴 ∩ 𝐵 = 2



Principle of Inclusion-Exclusion

The sum rule says when 𝐴 and 𝐵 are disjoint (no intersection), then  
𝐴 ∪ 𝐵 = 𝐴 + |𝐵|.

What about when 𝐴 and 𝐵 aren’t disjoint? 

𝐴 𝐵𝐴 ∩ 𝐵
For any two sets 𝐴 and 𝐵:

𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

Principle of Inclusion-Exclusion



Principle of Inclusion-Exclusion

The sum rule says when 𝐴 and 𝐵 are disjoint (no intersection), then  
𝐴 ∪ 𝐵 = 𝐴 + |𝐵|.

What about when 𝐴 and 𝐵 aren’t disjoint? 

𝐴 𝐵𝐴 ∩ 𝐵
For any two sets 𝐴 and 𝐵:

𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

Principle of Inclusion-Exclusion



Principle of Inclusion-Exclusion

The sum rule says when 𝐴 and 𝐵 are disjoint (no intersection), then  
𝐴 ∪ 𝐵 = 𝐴 + |𝐵|.

What about when 𝐴 and 𝐵 aren’t disjoint? 

𝐴 𝐵𝐴 ∩ 𝐵
For any two sets 𝐴 and 𝐵:

𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

Principle of Inclusion-Exclusion



Principle of Inclusion-Exclusion

The sum rule says when 𝐴 and 𝐵 are disjoint (no intersection), then  
𝐴 ∪ 𝐵 = 𝐴 + |𝐵|.

What about when 𝐴 and 𝐵 aren’t disjoint? 

𝐴 𝐵𝐴 ∩ 𝐵
For any two sets 𝐴 and 𝐵:

𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

Principle of Inclusion-Exclusion



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

1

1

11



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

1

1

2

2

1

1



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

1

11

3

2

2

2



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

1

11

2

1

2

2



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

1

11

1

1

1

2



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

1

11

0

1

1

1



Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

1

11

1

1

1

1



In general:

𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 =

    𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛

   − 𝐴1 ∩ 𝐴2 + 𝐴1 ∩ 𝐴3 + ⋯ + 𝐴1 ∩ 𝐴𝑛 + 𝐴2 ∩ 𝐴3 + ⋯ + 𝐴𝑛−1 ∩ 𝐴𝑛

   +( 𝐴1 ∩ 𝐴2 ∩ 𝐴3 + ⋯ + 𝐴𝑛−2 ∩ 𝐴𝑛−1 ∩ 𝐴𝑛 )

   − …

+ −1 𝑛+1|𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛|

Add the individual sets, subtract all pairwise intersections, add all three-wise 
intersections, subtract all four-wise intersections,…, [add/subtract] the 𝑛-wise 
intersection.



Principle of Inclusion-Exclusion

For any two sets 𝐴 and 𝐵:

𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵 0

For three sets:
𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

For any number of sets: 

𝐴 ∪ 𝐵 ∪ 𝐶 ∪ ⋯ = singles – doubles + triples – quadruples + ….

Principle of Inclusion-Exclusion



Example

How many length 5 strings over the alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

For what 𝐴, 𝐵, 𝐶 do we want |𝐴 ∪ 𝐵 ∪ 𝐶|?

𝐴 ~ set of length 5 strings with exactly 2 a’s

𝐵 ~ set of length 5 strings with exactly 1 b

𝐶 ~ set of length 5 strings with no x’s

𝐴 ∪ 𝐵 ∪ 𝐶 ~ set of strings that fall into at least one of the above sets 
^ we are interested in the size of this set!



Example

𝐴 =
𝐵 = 
𝐶 =

𝐴 ∩ 𝐵 =
𝐴 ∩ 𝐶 = 
𝐵 ∩ 𝐶 =

𝐴 ∩ 𝐵 ∩ 𝐶 =

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}
 𝐵 = {length 5 strings that contain exactly 1 ‘b’s}
 𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|



Example

𝐴 = 5
2

⋅ 253 (choose ‘a’ spots, remaining chars)

𝐵 = 5
1

⋅ 254 (choose ‘b’ spot, remaining chars)

𝐶 = 255 (select [non-’x’] characters for each spot)

𝐴 ∩ 𝐵 =
𝐴 ∩ 𝐶 =
𝐵 ∩ 𝐶 =

𝐴 ∩ 𝐵 ∩ 𝐶 =

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}
 𝐵 = {length 5 strings that contain exactly 1 ‘b’s}
 𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|



Example

𝐴 = 5
2

⋅ 253 (choose ‘a’ spots, remaining chars)

𝐵 = 5
1

⋅ 254 (choose ‘b’ spot, remaining chars)

𝐶 = 255 (select [non-’x’] characters for each spot)

𝐴 ∩ 𝐵 = 5
2

⋅ 3
1

⋅ 242 (choose ‘a’ spots, ‘b’ spot, remaining chars)

𝐴 ∩ 𝐶 = 5
2

⋅ 243 (choose ‘a’ spots, remaining [non-’x’] chars)

𝐵 ∩ 𝐶 = 5
1

⋅ 244 

𝐴 ∩ 𝐵 ∩ 𝐶 =

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}
 𝐵 = {length 5 strings that contain exactly 1 ‘b’s}
 𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|



Example

𝐴 = 5
2

⋅ 253 (choose ‘a’ spots, remaining chars)

𝐵 = 5
1

⋅ 254 (choose ‘b’ spot, remaining chars)

𝐶 = 255 (select [non-’x’] characters for each spot)

𝐴 ∩ 𝐵 = 5
2

⋅ 3
1

⋅ 242 (choose ‘a’ spots, ‘b’ spot, remaining chars)

𝐴 ∩ 𝐶 = 5
2

⋅ 243 (choose ‘a’ spots, remaining [non-’x’] chars)

𝐵 ∩ 𝐶 = 5
1

⋅ 244 

𝐴 ∩ 𝐵 ∩ 𝐶 = 5
2

⋅ 3
1

⋅ 232 (choose ‘a’ spots, ‘b’ spot, remaining [non-’x’] chars)

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}
 𝐵 = {length 5 strings that contain exactly 1 ‘b’s}
 𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|



Example

𝐴 = 5
2

⋅ 253 

𝐵 = 5
1

⋅ 254 

𝐶 = 255 

𝐴 ∩ 𝐵 = 5
2

⋅ 3
1

⋅ 242  

𝐴 ∩ 𝐶 = 5
2

⋅ 243  

𝐵 ∩ 𝐶 = 5
1

⋅ 244 

𝐴 ∩ 𝐵 ∩ 𝐶 = 5
2

⋅ 3
1

⋅ 232 

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}
 𝐵 = {length 5 strings that contain exactly 1 ‘b’s}
 𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

𝐴 ∪ 𝐵 ∪ 𝐶  

= 
5
2

⋅ 253+ 
5
1

⋅ 254 + 255-
5
2

⋅ 3
1

⋅ 242- 
5
2

⋅ 243 - 5
1

⋅ 244  + 5
2

⋅ 3
1

⋅ 232

= 10,076,470



Practical tips

How do I know I’m looking for the size of a union of some sets? 

“how many ways for A or B or C to happen” → |𝐴 ∪ 𝐵 ∪ 𝐶|

“how many ways for at least one of A, B, or C” → |𝐴 ∪ 𝐵 ∪ 𝐶|

“how many ways for none of A, B, C” → ҧ𝐴 ∩ ത𝐵 ∩ ҧ𝐶 = 𝐴 ∪ 𝐵 ∪ 𝐶
maybe use complementary counting + inclusion-exclusion (total – # at least 1 occur)



Practical tips

• Give yourself clear definitions of 𝐴, 𝐵, 𝐶.

• Make a list of all the formulas you need before you start actually calculating.

• Calculate “size-by-size” and incorporate into the total.

• Basic check: If (in an intermediate step) you ever:

  1. Get a negative value

  2. Calculate that 𝐴 ∪ 𝐵 > |𝐴|

Then something has gone wrong! Recheck calculations ☺ 



Summary

Permutations (order matters) and Combinations (order doesn’t matter)

Applications of Combinations
Path Counting 

Binomial Theorem – useful 

A useful trick for counting is to pretend order matters, then account for the 
overcounting at the end (by dividing out repetitions)



More examples
Putting it all together! 



Cards
A lot of counting problems deal with cards! 

A “standard” deck of cards has 52 cards (13 ⋅ 4 = 52). 

Each card has one of 4 suits
diamonds , 

hearts , 

clubs ♧, 

spades 

and one of 13 values/ranks (Ace,2,3,4,5,6,7,8,9,10,Jack,Queen, King). 

e.g., Ace , 5 , 5♧, 10  are all possible cards

A “𝑘-card-hand” is an unordered set of 𝑘 cards



Cards
A lot of counting problems deal with cards! 

A “standard” deck of cards has 52 cards (13 ⋅ 4 = 52). 

Each card has one of 4 suits
diamonds , 

hearts , 

clubs ♧, 

spades 

and one of 13 values/ranks (Ace,2,3,4,5,6,7,8,9,10,Jack,Queen, King). 

e.g., Ace , 5 , 5♧, 10  are all possible cards

A “𝑘-card-hand” is an unordered set of 𝑘 cards

How many five-card “flushes” are there? – a flush is a hand of cards all of the 
same suit. (e.g., {A , 3 , 5 , 6 , Q })



Five-card “flushes”

How many five-card “flushes” are there? – a flush is a hand of cards all of 
the same suit. 
Think: How would I create a set of cards that is a flush? 

Way 1: 

1. Pick the suit (e.g., ) – 𝟒
𝟏

2. Pick the specific values/cards from that suit (e.g., {A,3,5,6,Q}) - 𝟏𝟑
𝟓

Now we’ve created an unordered 5-card flush! (e.g., {A , 3 , 5 , 6 , Q })

4
1

⋅ 13
5



Five-card “flushes”

Way 2: 

Pretend order matters. 

1. Pick any first card – 52 options

2. All remaining cards must be from the same suit of that first suit: 
 12 options for the 2nd card, 11 options for the 3rd card, etc. 

Divide out the overcounting - divide by 5!, since order isn’t supposed to 
matter (i.e., only count each unordered flush once)

52⋅12⋅11⋅10⋅9

5!

This equals the same number as what we got on the last slide!



How many 5-card hands have at least 3 aces?

There are 4 Aces (and 48 non aces) in a deck of cards

1. Choose 𝟑 aces: 4
3

2. Then pick 𝟐 of the 𝟒𝟗 remaining cards to form a 5(the last ace is 

allowed as well, because we’re allowed to have all 4): 49
2

4
3

⋅ 49
2

What’s wrong with this calculation? Does it,

A) Overcount B) Undercount C) It’s correct! D) I have no idea :)

Go to pollev.com/cse312



Sleuth’s Criterion
How to check if we counted correctly?

For each outcome that we want to count, there should be exactly one 
set of choices in the sequential process that will lead to that outcome. 

> If there are no sequence of choices that will lead to the outcome, we 
have undercounted.

> If there is more than one sequence of choices that will lead to the 
outcome, we have overcounted. 



Sleuth’s Criterion (in context)
How to check if we counted correctly?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

> If there are no sequence of choices that will lead to a particular 5-card 
hand with at least 3 aces, we have undercounted.

> If there is more than one sequence of choices that will lead to a 
particular 5-card hand with at least 3 aces, we have overcounted. 



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , Q , K  is a valid outcome should counted exactly once. 

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {Q , K }

Great! There’s no other set 
of choices that will lead to 
this hand.



How many 5-card hands have at least 3 aces?

For each “5-card hands with at least 3 aces” that we want to count, 
there should be exactly one set of choices in the sequential process that 
will lead to that outcome. 

A♧, A , A , A , K  is a valid outcome should counted exactly once. 
But…

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }

Step 1 (choose 3 aces): {A♧, A , A }

Step 2 (pick 2 of remaining 49): {A , K }

Both of these are different 
choices in the sequential 
process and are counted 
separately, but they are 
the same hand!

This is overcounting  



Fixing The Overcounting



How many 5-card hands have at least 3 aces?

Way 1: We could start with our incorrect solution & subtract the overcounting.

 

What kinds of hands do we overcount (counted many times in the sequential process)?

> 5-card hands with 4 Aces (i.e., a hand like {A♧, A , A , A , X})

> This hand is counted 4 different times (each row below is a different set of choices)

{A♧, A , A }, {A , X}

{A♧, A , A }, {A , X}

{A♧, A , A }, {A , X}

{A , A , A }, {A♧, X}

Our original incorrect solution:

1. Choose 𝟑 aces: 4
3

, 2. Then pick 𝟐 of the 𝟒𝟗 remaining cards: 49
2
→

4
3

⋅ 49
2



How many 5-card hands have at least 3 aces?

Way 1: We could start with our incorrect solution & subtract the overcounting.

 

What kinds of hands do we overcount (counted many times in the sequential process)?

> 5-card hands with 4 Aces (i.e., a hand like {A♧, A , A , A , X})

So, how many outcomes are overcounted? 

 >There are 4
4

⋅ 48 = 48 5-card hands with all 4 Aces

> Each of these hands is counted 4 times, but we only want to count it once

> So we’ve counted 4 − 1 ⋅ 48 = 3 ⋅ 48 processes that shouldn’t count.

That would give a corrected total of 4
3

⋅ 49
2

− 3 ⋅ 48

Our original incorrect solution:

1. Choose 𝟑 aces: 4
3

, 2. Then pick 𝟐 of the 𝟒𝟗 remaining cards: 49
2
→

4
3

⋅ 49
2

{A♧, A , A }, {A , X}
{A♧, A , A }, {A , X}
{A♧, A , A }, {A , X}
{A , A , A }, {A♧, X}



How many 5-card hands have at least 3 aces?

Way 1: We could subtract out the overcounting - count exactly which hands 
are overcounted in our sequential process, and how many times each of 
those hands are overcounted, and subtract that from our initial count. 

4

3
⋅

49

2
− 3 ⋅ 52

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 



How many 5-card hands have at least 3 aces?

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 

Does this overcount/undercount?
For a valid outcome, there should be exactly 1 set of choices leading to that outcome:

A♧, A , A , Q ♧, K  - this will fall under the first case. The only possible set of 

choices leading to this is {A♧, A , A } in the 1st step and {Q ♧, K } in the 2nd



How many 5-card hands have at least 3 aces?

Way 2: Try a different approach! The problem with our original solutions was 
trying to account for the “at least” - come up with disjoint sets and count 
separately.

Case 1: There are exactly 3 aces: 4
3

⋅ 48
2

Case 2: There are exactly (all) 4 aces: 4
4

⋅ 48
1

 

Applying the sum rule: 4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 

Does this overcount/undercount?
For a valid outcome, there should be exactly 1 set of choices leading to that outcome:

A♧, A , A , A , K  - this will fall under the second case. The only possible set of 

choices leading to this is {A♧, A , A , A } in the 1st step and {K } in the 2nd



Takeaway

It’s hard to count sets where one of the conditions is “at least X”

Depending on the problem, you may have to:

- Break into need to break those conditions up into disjoint sets and 
use the sum rule

- Take the complement and find the total ways to have <X things
  usually more helpful when we’re asking for ways for “at least 1 thing occur”

- If we want at least 1 of some conditions to be met, may be able to 
write as a union of sets and use inclusion exclusion
 



Extra Practice



Books, revisited

Remember the books problem from lecture 1? Books 1,2,3,4,5 need to 
be assigned to Alice, Bob, and Charlie (each book to exactly one 
person).

Now that we know combinations, try a sequential process approach. It 
won’t be as nice as the change of perspective, but we can make it work.

Break into cases based on how many books Alice gets, use the sum rule 
to combine.



Books, revisited

Step 1: give Alice gets 0 books (1 way to do this)

Step 2: give Bob a subset of the remaining books 25 ways.

Step 3: give Charlie the remaining books (no choice – 1 way)

+

Step 1: give Alice 1 book ( 5
1

 ways to do this)

Step 2: give Bob a subset of the 4 remaining books 24 ways.

Step 3: give Charlie the remaining books (no choice – 1 way)

+ …



Books, revisited

Add all the options together

1 ⋅ 25 ⋅ 1 + 5
1

⋅ 24 ⋅ 1 + 5
2

⋅ 23 ⋅ 1 + 5
3

⋅ 22 ⋅ 1 + 5
4

⋅ 21 ⋅ 1 + 5
5

⋅ 20 ⋅ 1

If you plug and chug, you’ll get the number we got last time. It took quite a bit of 
work, but we got there! 
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