see syllabus for important information!

Assessments:
- per-lecture concept checks
- (almost) weekly homeworks
- midterm and final
- section participation

Syllabus notes

Counting Rules + Techniques

Sum Rule

If you are choosing one thing between \(n \) options in one group and \(m \) in another group with no overlap, the total number of options is: \(n + m \) (i.e., \(|A \cup B| = |A| + |B| \) if \(A \) and \(B \) don’t overlap)

Example: We are choosing between going to Delfino’s (6 options) or Supreme (4 options) for lunch. There are ______ options in total.

Used when: we have some disjoint cases, or some sets that don’t overlap

Product Rule

If you have a sequential process, where step 1 has \(n_1 \) options, step 2 has \(n_2 \) options, …, step \(k \) has \(n_k \) options, and you choose one from each step, the total possibilities is \(n_1 \times n_2 \times \ldots \times n_k \)

Example: We are ordering coffee with 3 options for base, 2 options for preparation, 4 options for the syrup. There are ______ options in total.

Used when: we have some sequential process. Write down steps to create the outcomes, count the options in each step, and multiply it together

Example: We have 5 books to split to 3 people (A, B, C). Every book goes to exactly one person, but each person could end up with no books (or all of them, or something in between).
K-SEQUENCES
n^k length k sequences from an alphabet of size n, with repeats allowed
 e.g.,

N FACTORIAL
n! = (n)(n-1)...(1) ways to rearrange n distinct objects
 e.g.,

K-PERMUTATIONS (ORDER MATTERS)
The number of k-element sequences of distinct symbols from a universe of n symbols is: P(n,k)
e.g., How many length 3 sequences are there consisting of distinct elements of \{1,2,3, 4, 5\}?

K-COMBINATIONS (ORDER DOESN’T MATTER)
The number of k-element subsets from a set of n symbols is: C(n,k)
e.g., How many subsets of 3 numbers are there consisting of distinct elements of \{1, 2, 3, 4, 5\}?

ANOTHER COUNTING TECHNIQUE

COMPLEMENTARY COUNTING
\begin{align*}
\text{total options} - \text{options for A to not occur} &= \text{options for A to occur} \\
\end{align*}
e.g.,