
Probability & Statistics with Applications to Computing
Key Definitions and Theorems

1 Combinatorial Theory

1.1 So You Think You Can Count?

The Sum Rule: If an experiment can either end up being one of N outcomes, or one of M outcomes (where there is no
overlap), then the total number of possible outcomes is: N +M .

The Product Rule: If an experiment has N1 outcomes for the first stage, N2 outcomes for the second stage, . . . , and Nm
outcomes for the mth stage, then the total number of outcomes of the experiment is N1 ×N2 · · · · ·Nm =

∏m
i=1Ni.

Permutation: The number of orderings of N distinct objects is N ! = N · (N − 1) · (N − 2) · . . . 3 · 2 · 1.

Complementary Counting: Let U be a (finite) universal set, and S a subset of interest. Then, | S |=| U | − | U \ S |.

1.2 More Counting

k-Permutations: If we want to pick (order matters) only k out of n distinct objects, the number of ways to do so is:

P (n, k) = n · (n− 1) · (n− 2) · ... · (n− k + 1) = n!
(n−k)!

k-Combinations/Binomial Coefficients: If we want to choose (order doesn’t matter) only k out of n distinct objects,
the number of ways to do so is:

C(n, k) =

(
n

k

)
=
P (n, k)

k!
=

n!

k!(n− k)!

Multinomial Coefficients: If we have k distinct types of objects (n total), with n1 of the first type, n2 of the second, ...,
and nk of the k-th, then the number of arrangements possible is(

n

n1, n2, ..., nk

)
=

n!

n1!n2!...nk!

Stars and Bars/Divider Method: The number of ways to distribute n indistinguishable balls into k distinguishable bins
is (

n+ (k − 1)

k − 1

)
=

(
n+ (k − 1)

n

)
1.3 No More Counting Please

Binomial Theorem: Let x, y ∈ R and n ∈ N a positive integer. Then: (x+ y)n =
∑n
k=0

(
n
k

)
xkyn−k.

Principle of Inclusion-Exclusion (PIE):
2 events: |A ∪B| = |A|+ |B| − |A ∩B|
3 events: |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
k events: singles - doubles + triples - quads + ...

Pigeonhole Principle: If there are n pigeons we want to put into k holes (where n > k), then at least one pigeonhole must
contain at least 2 (or to be precise, dn/ke) pigeons.

Combinatorial Proofs: To prove two quantities are equal, you can come up with a combinatorial situation, and show that
both in fact count the same thing, and hence must be equal.

2 Discrete Probability

2.1 Discrete Probability

Key Probability Definitions: The sample space is the set Ω of all possible outcomes of an experiment. An event is
any subset E ⊆ Ω. Events E and F are mutually exclusive if E ∩ F = ∅.
Axioms of Probability & Consequences:

1. (Axiom: Nonnegativity) For any event E, P (E) ≥ 0.
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2. (Axiom: Normalization) P (Ω) = 1.

3. (Axiom: Countable Additivity) If E and F are mutually exclusive, then P(E ∪ F ) = P (E) + P (F ).

1. (Corollary: Complementation) P
(
EC
)

= 1− P (E)

2. (Corollary: Monotonicity) If E ⊆ F , then P (E) ≤ P (F )

3. (Corollary: Inclusion-Exclusion) P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

Equally Likely Outcomes: If Ω is a sample space such that each of the unique outcome elements in Ω are equally likely,
then for any event E ⊆ Ω: P(E) = |E|/|Ω|.
2.2 Conditional Probability

Conditional Probability: P (A | B) =
P (A ∩B)

P (B)

Bayes Theorem: P (A | B) =
P (B | A)P (A)

P (B)

Partition: Non-empty events E1, . . . , En partition the sample space Ω if they are both:

• (Exhaustive) E1 ∪ E2 ∪ · · · ∪ En =
⋃n
i=1Ei = Ω (they cover the entire sample space).

• (Pairwise Mutually Exclusive) For all i 6= j, Ei ∩ Ej = ∅ ( none of them overlap)

Note that for any event E, E and EC always form a partition of Ω.

Law of Total Probability (LTP): If events E1, . . . , En partition Ω, then for any event F :

P (F ) =

n∑
i=1

P (F ∩ Ei) =

n∑
i=1

P (F | Ei)P (Ei)

Bayes Theorem with LTP: Let events E1, . . . , En partition the sample space Ω, and let F be another event. Then:

P (E1 | F ) =
P (F | E1)P (E1)∑n
i=1 P (F | Ei)P (Ei)

2.3 Independence

Chain Rule: Let A1, . . . , An be events with nonzero probabilities. Then:

P (A1, . . . , An) = P (A1)P (A2 | A1)P (A3 | A1A2) · · ·P (An | A1, . . . , An−1)

Independence: A and B are independent if any of the following equivalent statements hold:

1. P (A | B) = P (A)

2. P (B | A) = P (B)

3. P (A,B) = P (A)P (B)

Mutual Independence: We say n events A1, A2, . . . , An are (mutually) independent if, for any subset I ⊆ [n] =
{1, 2, . . . , n}, we have

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai)

This equation is actually representing 2n equations since there are 2n subsets of [n].

Conditional Independence: A and B are conditionally independent given an event C if any of the following
equivalent statements hold:

1. P (A | B,C) = P (A | C)
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2. P (B | A,C) = P (B | C)

3. P (A,B | C) = P (A | C)P (B | C)

3 Discrete Random Variables

3.1 Discrete Random Variables Basics

Random Variable (RV): A random variable (RV) X is a numeric function of the outcome X : Ω→ R. The set of possible
values X can take on is its range/support, denoted ΩX .

If ΩX is finite or countable infinite (typically integers or a subset), X is a discrete RV. Else if ΩX is uncountably large (the
size of real numbers), X is a continuous RV.

Probability Mass Function (PMF): For a discrete RV X, assigns probabilities to values in its range. That is pX : ΩX →
[0, 1] where: pX(k) = P (X = k).

Expectation: The expectation of a discrete RV X is: E [X] =
∑
k∈ΩX

k · pX(k).

3.2 More on Expectation

Linearity of Expectation (LoE): For any random variables X,Y (possibly dependent):

E [aX + bY + c] = aE [X] + bE [Y ] + c

Law of the Unconscious Statistician (LOTUS): For a discrete RV X and function g, E [g(X)] =
∑
b∈ΩX

g(b) · pX(b).

3.3 Variance

Linearity of Expectation with Indicators: If asked only about the expectation of a RV X which is some sort of “count”
(and not its PMF), then you may be able to write X as the sum of possibly dependent indicator RVs X1, . . . , Xn, and apply
LoE, where for an indicator RV Xi, E [Xi] = 1 · P (Xi = 1) + 0 · P (Xi = 0) = P (Xi = 1).

Variance: Var (X) = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]

2
.

Standard Deviation (SD): σX =
√
Var (X).

Property of Variance: Var (aX + b) = a2Var (X).

3.4 Zoo of Discrete Random Variables Part I

Independence: Random variables X and Y are independent, denoted X ⊥ Y , if for all x ∈ ΩX and all y ∈ ΩY :
P (X = x ∩ Y = y) = P (X = x) · P (Y = y).

Independent and Identically Distributed (iid): We say X1, . . . , Xn are said to be independent and identically
distributed (iid) if all the Xi’s are independent of each other, and have the same distribution (PMF for discrete RVs, or
CDF for continuous RVs).

Variance Adds for Independent RVs: If X ⊥ Y , then Var (X + Y ) = Var (X) + Var (Y ).

Bernoulli Process: A Bernoulli process with parameter p is a sequence of independent coin flips X1, X2, X3, ... where
P (head) = p. If flip i is heads, then we encode Xi = 1; otherwise, Xi = 0.

Bernoulli/Indicator Random Variable: X ∼ Bernoulli(p) (Ber(p) for short) iff X has PMF:

pX (k) =

{
p, k = 1

1− p, k = 0

E [X] = p and Var (X) = p(1 − p). An example of a Bernoulli/indicator RV is one flip of a coin with P (head) = p. By a
clever trick, we can write

pX (k) = pk (1− p)1−k
, k = 0, 1

Binomial Random Variable: X ∼ Binomial(n, p) (Bin(n, p) for short) iff X has PMF

pX (k) =

(
n

k

)
pk (1− p)n−k , k ∈ ΩX = {0, 1, . . . , n}

E [X] = np and Var (X) = np(1 − p). X is the sum of n iid Ber(p) random variables. An example of a Binomial RV is the
number of heads in n independent flips of a coin with P (head) = p. Note that Bin(1, p) ≡ Ber(p). As n → ∞ and p →
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0,with np = λ, then Bin (n, p) → Poi(λ). If X1, . . . , Xn are independent Binomial RV’s, where Xi ∼ Bin(Ni, p), then
X = X1 + . . .+Xn ∼ Bin(N1 + . . .+Nn, p).

3.5 Zoo of Discrete Random Variables Part II

Uniform Random Variable (Discrete): X ∼ Uniform(a, b) (Unif(a, b) for short), for integers a ≤ b, iff X has PMF:

pX (k) =
1

b− a+ 1
, k ∈ ΩX = {a, a+ 1, . . . , b}

E [X] = a+b
2 and Var (X) = (b−a)(b−a+2)

12 . This represents each integer in [a, b] to be equally likely. For example, a single roll
of a fair die is Unif(1, 6).

Geometric Random Variable: X ∼ Geometric(p) (Geo(p) for short) iff X has PMF:

pX (k) = (1− p)k−1
p, k ∈ ΩX = {1, 2, 3, . . .}

E [X] = 1
p and Var (X) = 1−p

p2 . An example of a Geometric RV is the number of independent coin flips up to and including

the first head, where P (head) = p.

Negative Binomial Random Variable: X ∼ NegativeBinomial(r, p) (NegBin(r, p) for short) iff X has PMF:

pX (k) =

(
k − 1

r − 1

)
pr (1− p)k−r , k ∈ ΩX = {r, r + 1, r + 2, . . .}

E [X] = r
p and Var (X) = r(1−p)

p2 . X is the sum of r iid Geo(p) random variables. An example of a Negative Binomial RV is

the number of independent coin flips up to and including the r-th head, where P (head) = p. If X1, . . . , Xn are independent
Negative Binomial RV’s, where Xi ∼ NegBin(ri, p), then X = X1 + . . .+Xn ∼ NegBin(r1 + . . .+ rn, p).

3.6 Zoo of Discrete Random Variables Part III

Poisson Random Variable: X ∼ Poisson(λ) (Poi(λ) for short) iff X has PMF:

pX (k) = e−λ
λk

k!
, k ∈ ΩX = {0, 1, 2, . . .}

E [X] = λ and Var (X) = λ. An example of a Poisson RV is the number of people born during a particular minute,
where λ is the average birth rate per minute. If X1, . . . , Xn are independent Poisson RV’s, where Xi ∼ Poi(λi), then
X = X1 + . . .+Xn ∼ Poi(λ1 + . . .+ λn).

Hypergeometric Random Variable: X ∼ HyperGeometric(N,K, n) (HypGeo(N,K, n) for short) iff X has PMF:

pX (k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , k ∈ ΩX = {max{0, n+K −N}, . . . ,min {K,n}}

E [X] = nKN and Var (X) = nK(N−K)(N−n)
N2(N−1) . This represents the number of successes drawn, when n items are drawn from

a bag with N items (K of which are successes, and N −K failures) without replacement. If we did this with replacement,
then this scenario would be represented as Bin

(
n, KN

)
.

4 Continuous Random Variables

4.1 Continuous Random Variables Basics

Probability Density Function (PDF): The probability density function (PDF) of a continuous RV X is the function
fX : R→ R, such that the following properties hold:

• fX(z) ≥ 0 for all z ∈ R

•
∫∞
−∞ fX(t) dt = 1

• P (a ≤ X ≤ b) =
∫ b
a
fX(w) dw

Cumulative Distribution Function (CDF): The cumulative distribution function (CDF) of ANY random variable
(discrete or continuous) is defined to be the function FX : R→ R with FX(t) = P (X ≤ t). If X is a continuous RV, we have:
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• FX(t) = P (X ≤ t) =
∫ t
−∞ fX(w) dw for all t ∈ R

• d
duFX(u) = fX(u)

Univariate: Discrete to Continuous:

Discrete Continuous
PMF/PDF pX(x) = P (X = x) fX(x) 6= P (X = x) = 0

CDF FX (x) =
∑
t≤x pX(t) FX (x) =

∫ x
−∞ fX (t) dt

Normalization
∑
x pX(x) = 1

∫∞
−∞ fX (x) dx = 1

Expectation/LOTUS E [g(X)] =
∑
x g(x)pX(x) E [g(X)] =

∫∞
−∞ g(x)fX (x) dx

4.2 Zoo of Continuous RVs

Uniform Random Variable (Continuous): X ∼ Uniform(a, b) (Unif(a, b) for short) iff X has PDF:

fX (x) =

{
1
b−a if x ∈ ΩX = [a, b]

0 otherwise

E [X] = a+b
2 and Var (X) = (b−a)2

12 . This represents each real number from [a, b] to be equally likely. Do NOT confuse this
with its discrete counterpart!

Exponential Random Variable: X ∼ Exponential(λ) (Exp(λ) for short) iff X has PDF:

fX (x) =

{
λe−λx if x ∈ ΩX = [0,∞)
0 otherwise

E [X] = 1
λ and Var (X) = 1

λ2 . FX (x) = 1 − e−λx for x ≥ 0. The exponential RV is the continuous analog of the geometric
RV: it represents the waiting time to the next event, where λ > 0 is the average number of events per unit time. Note that
the exponential measures how much time passes until the next event (any real number, continuous), whereas the Poisson
measures how many events occur in a unit of time (nonnegative integer, discrete). The exponential RV is also memoryless:

for any s, t ≥ 0, P (X > s+ t | X > s) = P (X > t)

4.3 The Normal/Gaussian Random Variable

Normal (Gaussian, “bell curve”) Random Variable: X ∼ N (µ, σ2) iff X has PDF:

fX (x) =
1

σ
√

2π
e−

1
2

(x−µ)2

σ2 , x ∈ ΩX = R

E [X] = µ and Var (X) = σ2. The “standard normal” random variable is typically denoted Z and has mean 0 and variance 1:
if X ∼ N (µ, σ2), then Z = X−µ

σ ∼ N (0, 1). The CDF has no closed form, but we denote the CDF of the standard normal as
Φ (z) = FZ (z) = P (Z ≤ z). Note from symmetry of the probability density function about z = 0 that: Φ (−z) = 1− Φ(z).

Closure of the Normal Under Scale and Shift: If X ∼ N (µ, σ2), then aX + b ∼ N (aµ + b, a2σ2). In particular, we
can always scale/shift to get the standard Normal: X−µ

σ ∼ N (0, 1).

Closure of the Normal Under Addition: If X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) are independent, then

aX + bY + c ∼ N (aµX + bµY + c, a2σ2
X + b2σ2

Y )

4.4 Transforming Continuous RVs

Steps to compute PDF of Y = g(X) from X (via CDF): Suppose X is a continuous RV.

1. Write down the range ΩX , PDF fX , and CDF FX .

2. Compute the range ΩY = {g(x) : x ∈ ΩX}.

3. Start computing the CDF of Y on ΩY , FY (y) = P (g(X) ≤ y), in terms of FX .

4. Differentiate the CDF FY (y) to get the PDF fY (y) on ΩY . fY is 0 outside ΩY .



Alex Tsun Probability & Statistics with Applications to Computing 6

Explicit Formula to compute PDF of Y = g(X) from X (Univariate Case): Suppose X is a continuous RV. If Y =

g(X) and g : ΩX → ΩY is strictly monotone and invertible with inverse X = g−1(Y ) = h(Y ), then

fY (y) =

{
fX(h(y)) · |h′(y)| if y ∈ ΩY
0 otherwise

Explicit Formula to compute PDF of Y = g(X) from X (Multivariate Case): Let X = (X1, ..., Xn), Y =
(Y1, ..., Yn) be continuous random vectors (each component is a continuous rv) with the same dimension n (so ΩX,ΩY ⊆ Rn),
and Y = g(X) where g : ΩX → ΩY is invertible and differentiable, with differentiable inverse X = g−1(y) = h(y). Then,

fY(y) = fX(h(y))

∣∣∣∣det

(
∂h(y)

∂y

)∣∣∣∣
where

(
∂h(y)
∂y

)
∈ Rn×n is the Jacobian matrix of partial derivatives of h, with(

∂h(y)

∂y

)
ij

=
∂(h(y))i
∂yj

5 Multiple Random Variables

5.1 Joint Discrete Distributions

Cartesian Product of Sets: The Cartesian product of sets A and B is denoted: A×B = {(a, b) : a ∈ A, b ∈ B}.
Joint PMFs: Let X,Y be discrete random variables. The joint PMF of X and Y is:

pX,Y (a, b) = P (X = a, Y = b)

The joint range is the set of pairs (c, d) that have nonzero probability:

ΩX,Y = {(c, d) : pX,Y (c, d) > 0} ⊆ ΩX × ΩY

Note that the probabilities in the table must sum to 1:∑
(s,t)∈ΩX,Y

pX,Y (s, t) = 1

Further, note that if g : R2 → R is a function, then LOTUS extends to the multidimensional case:

E [g(X,Y )] =
∑
x∈ΩX

∑
y∈ΩY

g(x, y)pX,Y (x, y)

Marginal PMFs: Let X,Y be discrete random variables. The marginal PMF of X is: pX(a) =
∑
b∈ΩY

pX,Y (a, b).

Independence (DRVs): Discrete RVs X,Y are independent, written X ⊥ Y , if for all x ∈ ΩX and y ∈ ΩY : pX,Y (x, y) =
pX(x)pY (y).

Variance Adds for Independent RVs: If X ⊥ Y , then: Var (X + Y ) = Var (X) + Var (Y ).

5.2 Joint Continuous Distributions

Joint PDFs: Let X,Y be continuous random variables. The joint PDF of X and Y is:

fX,Y (a, b) ≥ 0

The joint range is the set of pairs (c, d) that have nonzero density:

ΩX,Y = {(c, d) : fX,Y (c, d) > 0} ⊆ ΩX × ΩY

Note that the double integral over all values must be 1:∫ ∞
−∞

∫ ∞
−∞

fX,Y (u, v)dudv = 1
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Further, note that if g : R2 → R is a function, then LOTUS extends to the multidimensional case:

E [g(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(s, t)fX,Y (s, t)dsdt

The joint PDF must satisfy the following (similar to univariate PDFs):

P (a ≤ X < b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c

fX,Y (x, y)dydx

Marginal PDFs: Let X,Y be continuous random variables. The marginal PDF of X is: fX(x) =
∫∞
−∞ fX,Y (x, y)dy.

Independence of Continuous Random Variables: Continuous RVs X,Y are independent, written X ⊥ Y , if for all
x ∈ ΩX and y ∈ ΩY , fX,Y (x, y) = fX(x)fY (y).

5.3 Conditional Distributions

Conditional PMFs and PDFs: If X,Y are discrete, the conditional PMF of X given Y is:

pX|Y (a | b) = P (X = a | Y = b) =
pX,Y (a, b)

pY (b)
=
pY |X(b | a)pX(a)

pY (b)

Similarly for continuous RVs, but with f ’s instead of p’s (PDFs instead of PMFs).

Conditional Expectation: If X is discrete (and Y is either discrete or continuous), then we define the conditional expec-
tation of g(X) given (the event that) Y = y as:

E [g(X) | Y = y] =
∑
x∈ΩX

g(x)pX|Y (x | y)

If X is continuous (and Y is either discrete or continuous), then

E [g(X) | Y = y] =

∫ ∞
−∞

g(x)fX|Y (x | y)dx

Notice that these sums and integrals are over x (not y), since E [g(X) | Y = y] is a function of y.

Law of Total Expectation (LTE): Let X,Y be jointly distributed random variables.

If Y is discrete (and X is either discrete or continuous), then:

E [g(X)] =
∑
y∈ΩY

E [g(X) | Y = y] pY (y)

If Y is continuous (and X is either discrete or continuous), then

E [g(X)] =

∫ ∞
−∞

E [g(X) | Y = y] fY (y)dy

Basically, for E [g(X)], we take a weighted average of E [g(X) | Y = y] over all possible values of y.

Multivariate: Discrete to Continuous:

Discrete Continuous
Joint Dist pX,Y (x, y) = P (X = x, Y = y) fX,Y (x, y) 6= P (X = x, Y = y)

Joint CDF FX,Y (x, y) =
∑
t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =

∫ x
−∞

∫ y
−∞ fX,Y (t, s) dsdt

Normalization
∑
x,y pX,Y (x, y) = 1

∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal Dist pX(x) =
∑
y pX,Y (x, y) fX(x) =

∫∞
−∞ fX,Y (x, y)dy

Expectation E [g(X,Y )] =
∑
x,y g(x, y)pX,Y (x, y) E [g(X,Y )] =

∫ ∫
g(x, y)fX,Y (x, y)dxdy

Conditional Dist pX|Y (x|y) =
pX,Y (x,y)
pY (y) fX|Y (x|y) =

fX,Y (x,y)
fY (y)

Conditional Exp E [X|Y = y] =
∑
x xpX|Y (x|y) E [X|Y = y] =

∫∞
−∞ xfX|Y (x|y)dx

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)
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5.4 Covariance and Correlation

Covariance: The covariance of X and Y is:

Cov (X,Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ]− E [X]E [Y ]

Covariance satisfies the following properties:

1. If X ⊥ Y , then Cov (X,Y ) = 0 (but not necessarily vice versa).

2. Cov (X,X) = Var (X). (Just plug in Y = X).

3. Cov (X,Y ) = Cov (Y,X). (Multiplication is commutative).

4. Cov (X + c, Y ) = Cov (X,Y ). (Shifting doesn’t and shouldn’t affect the covariance).

5. Cov (aX + bY, Z) = a ·Cov (X)Z+b ·Cov (Y, Z). This can be easily remembered like the distributive property of scalars
(aX + bY )Z = a(XZ) + b(Y Z).

6. Var (X + Y ) = Var (X) + Var (Y ) + 2Cov (X,Y ), and hence if X ⊥ Y , then Var (X + Y ) = Var (X) + Var (Y ).

7. Cov
(∑n

i=1Xi,
∑m
j=1 Yi

)
=
∑n
i=1

∑m
j=1 Cov (Xi, Yj). That is covariance works like FOIL (first, outer, inner, last) for

multiplication of sums ((a+ b+ c)(d+ e) = ad+ ae+ bd+ be+ cd+ ce).

(Pearson) Correlation: The (Pearson) correlation of X and Y is: ρ(X,Y ) = Cov(X,Y )√
Var(X)

√
Var(Y )

.

It is always true that −1 ≤ ρ(X,Y ) ≤ 1. That is, correlation is just a normalized version of covariance. Most notably,
ρ(X,Y ) = ±1 if and only if Y = aX + b for some constants a, b ∈ R, and then the sign of ρ is the same as that of a.

Variance of Sums of RVs: Let X1, . . . , Xn be any RVs (independent or not). Then,

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var (Xi) + 2
∑
i<j

Cov (Xi, Xj)

5.5 Convolution

Law of Total Probability for Random Variables:

Discrete version: If X, Y are discrete:

pX(x) =
∑
y

pX,Y (x, y) =
∑
y

pX|Y (x | y)pY (y)

Continuous version: If X, Y are continuous:

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy =

∫ ∞
−∞

fX|Y (x | y)fY (y)dy

Convolution: Let X, Y be independent RVs, and Z = X + Y .

Discrete version: If X, Y are discrete:

pZ(z) =
∑
x∈ΩX

pX(x)pY (z − x)

Continuous version: If X, Y are continuous:

fZ(z) =

∫
x∈ΩX

fX(x)fY (z − x)dx

5.6 Limit Theorems

The Sample Mean + Properties: Let X1, X2, . . . , Xn be a sequence of iid RVs with mean µ and variance σ2. The

sample mean is: X̄n = 1
n

∑n
i=1Xi. Further, E

[
X̄n

]
= µ and Var

(
X̄n

)
= σ2/n

The Law of Large Numbers (LLN): Let X1, . . . , Xn be iid RVs with the same mean µ. As n → ∞, the sample mean



Alex Tsun Probability & Statistics with Applications to Computing 9

Xn converges to the true mean µ.

The Central Limit Theorem (CLT): Let X1, . . . Xn be a sequence of iid RVs with mean µ and (finite) variance σ2.
Then as n→∞,

X̄n → N
(
µ,
σ2

n

)
The mean or variance are not a surprise; the importance of the CLT is, regardless of the distribution of Xi’s, the sample
mean approaches a Normal distribution as n→∞.

The Continuity Correction: When approximating an integer-valued (discrete) random variable X with a continuous one
Y (such as in the CLT), if asked to find a P (a ≤ X ≤ b) for integers a ≤ b, you should use P (a− 0.5 ≤ Y ≤ b+ 0.5) so that
the width of the interval being integrated is the same as the number of terms summed over (b− a+ 1).

6 Concentration Inequalities

6.1 Markov and Chebyshev Inequalities

Markov’s Inequality: Let X ≥ 0 be a non-negative RV, and let k > 0. Then: P (X ≥ k) ≤ E [X]

k
.

Chebyshev’s Inequality: Let X be any RV with expected value µ = E[X] and finite variance Var (X). Then, for any real

number α > 0. Then, P (|X − µ| ≥ α) ≤ Var (X)

α2
.

6.2 The Chernoff Bound

(Multiplicative) Chernoff Bound:

Let X1, X2, ..., Xn be independent Bernoulli random variables.

Let X = Σni=1Xi, and µ = E [X]. Then, for any 0 ≤ δ ≤ 1,

P (X ≥ (1 + δ)µ) ≤ exp

(
−δ

2µ

3

)
and P (X ≤ (1− δ)µ) ≤ exp

(
−δ

2µ

2

)
6.3 Even More Inequalities

The Union Bound: Let E1, E2, ..., En be a collection of events. Then: P (
⋃n
i=1Ei) ≤

∑n
i=1 P (Ei).

A similar statement also holds if the number of events is countably infinite.

Hoeffding’s Inequality: Let X1, ...Xn be independent random variables, where each Xi is bounded: ai ≤ Xi ≤ bi and let

Xn be their sample mean. Then,

P
(
|Xn − E

[
Xn

]
| ≥ t

)
≤ 2 exp

(
2n2t2∑n

i−1 (bi − ai)2

)
In the case X1, ..., Xn are iid (so a ≤ Xi ≤ b for all i) with mean µ, then

P
(
|Xn − µ| ≥ t

)
≤ 2 exp

(
2n2t2

n(b− a)2

)
= 2 exp

(
2nt2

(b− a)2

)

7 Statistical Estimation

7.1 Maximum Likelihood Estimation

Realization / Sample: A realization/sample x of a random variable X is the value that is actually observed (will always
be in ΩX).

Likelihood: Let x = (x1, ..., xn) be iid realizations from PMF pX(t | θ) (if X is discrete), or from density fX(t | θ) (if X is
continuous), where θ is a parameter (or vector of parameters). We define the likelihood of x given θ to be the “probability”
of observing x if the true parameter is θ. The log-likelihood is just the log of the likelihood, which is typically easier to
optimize.

If X is discrete,

L(x | θ) =

n∏
i=1

pX(xi | θ) lnL(x | θ) =

n∑
i=1

ln pX(xi | θ)
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If X is continuous,

L(x | θ) =

n∏
i=1

fX(xi | θ) lnL(x | θ) =

n∑
i=1

ln fX(xi | θ)

Maximum Likelihood Estimator (MLE): Let x = (x1, ..., xn) be iid realizations from probability mass function pX(t | θ)
(if X is discrete), or from density fX(t | θ) (if X is continuous), where θ is a parameter (or vector of parameters). We define

the maximum likelihood estimator (MLE) θ̂MLE of θ to be the parameter which maximizes the likelihood/log-likelihood:

θ̂MLE = arg max
θ
L(x | θ) = arg max

θ
lnL(x | θ)

7.2 Properties of Estimators

Bias: Let θ̂ be an estimator for θ. The bias of θ̂ as an estimator for θ is Bias(θ̂, θ) = E
[
θ̂
]
− θ. If Bias(θ̂, θ) = 0, or

equivalently E
[
θ̂
]

= θ, then we say θ̂ is an unbiased estimator of θ̂.

8 Statistical Inference

8.1 Confidence Intervals

Confidence Interval: Suppose you have iid samples x1,...,xn from some distribution with unknown parameter θ, and you
have some estimator θ̂ for θ.

A 100(1− α)% confidence interval for θ is an interval (typically but not always) centered at θ̂,
[
θ̂ −∆, θ̂ + ∆

]
, such that

the probability (over the randomness in the samples x1,...,xn) θ lies in the interval is 1− α:

P
(
θ ∈

[
θ̂ −∆, θ̂ + ∆

])
= 1− α

If θ̂ = 1
n

∑n
i=1 xi is the sample mean, then θ̂ is approximately normal by the CLT, and a 100(1− α)% confidence interval is

given by the formula: [
θ̂ − z1−α/2

σ√
n
, θ̂ + z1−α/2

σ√
n

]
where z1−α/2 = Φ−1

(
1− α

2

)
and σ is the true standard deviation of a single sample (which may need to be estimated).


