
Section 9: Solutions

Review of Main Concepts

• Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

• Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX(x ; θ) (ifX discrete) or density
fX(x ; θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood
function to be the probability of seeing the data.

If X is discrete:

L(x1, . . . , xn ; θ) =

n∏
i=1

pX(xi ; θ)

If X is continuous:

L(x1, . . . , xn ; θ) =

n∏
i=1

fX(xi ; θ)

• Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or
vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L(x1, . . . , xn ; θ) = argmax
θ

lnL(x1, . . . , xn ; θ)

• Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the
logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same
as the value that maximizes the log-likelihood.

If X is discrete:

lnL(x1, . . . , xn ; θ) =

n∑
i=1

ln pX(xi ; θ)

If X is continuous:

lnL(x1, . . . , xn ; θ) =

n∑
i=1

ln fX(xi ; θ)

• Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias(θ̂, θ) = E[θ̂]− θ. An estimator θ̂ of θ
is unbiased iff Bias(θ̂, θ) = 0, or equivalently E[θ̂] = θ.

• Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood

(c) Set it to 0 to find a candidate for the MLE, θ̂. (note: at this step, we change from the θ to the θ̂ because
in this step we are solving for the maximum likelihood estimator for θ)

(d) Take the second derivative and show that θ̂ indeed is a maximizer, that ∂2L
∂θ2 < 0 at θ̂. Also ensure that it

is the global maximizer: check points of non-differentiability and boundary values.

1. Content Review

(a) True or False: The Log-Likelihood gives a slightly different estimate, but because it is close enough and easier
to compute we use it for our estimate of θ.
Solution:
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False: Since the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood
will be exactly the same as the value that maximizes the log-likelihood.

(b) True or False: θ̂ is the true parameter and θ is our estimate. Solution:

False: It is the other way around. Remember to switch to θ̂ when you set your equation to zero!

(c) True or False: An estimator is unbiased if Bias(θ̂, θ) = E[θ̂] − θ = 0 or equivalently E[θ̂] = θ Solution:

True by definition of

(d) You flip a coin 10 times and observe HHHTHHTHHH (8 heads, 2 tails). What is the MLE of θ, where θ is the
true probability of seeing tails?

θ̂ = .2

θ̂ = .25

θ̂ = .8

θ̂ = .3

Solution:

Option 1: θ̂ = .2

2. Mystery Dish!

A fancy new restaurant has opened up which features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability θ, dish C with probability 2θ, and dish D with probability 0.5− 3θ

Each diner is served a dish independently. Let xA be the number of people who received dish A, xB the number of
people who received dish B, etc, where xA + xB + xC + xD = n. Find the θ̂, the maximum likelihood estimator for
θ.

Solution:

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing the likelihood of
seeing the given data given our parameter θ. Because each diner is assigned a dish independently, the likelihood
is equal to the product over diners of the chance they got the particular dish they got, which gives us:

L(x ; θ) = 0.5xAθxB (2θ)xC (0.5− 3θ)xD

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it equal to 0, and
solve for θ̂.

lnL(x ; θ) = xA ln(0.5) + xB ln(θ) + xC ln(2θ) + xD ln(0.5− 3θ)

∂

∂θ
lnL(x ; θ) =

xB

θ
+

xC

θ
− 3xD

0.5− 3θ
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xB

θ̂
+

xC

θ̂
− 3xD

0.5− 3θ̂
= 0

Solving yields θ̂ = xB+xC

6(xB+xC+xD) .

3. A Red Poisson

Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. Find the MLE
for θ.

Solution:

Because each Poisson RV is i.i.d., the likelihood of seeing that data is just the PMF of the Poisson distribution
multiplied together for every xi. From there, take the log-likelihood, then the first derivative, set it equal to 0
and solve for θ̂.

L(x1, . . . , xn ; θ) =

n∏
i=1

e−θ θ
xi

xi!

lnL(x1, . . . , xn ; θ) =

n∑
i=1

[−θ − ln(xi!) + xi ln(θ)]

∂

∂θ
lnL(x1, . . . , xn ; θ) =

n∑
i=1

[
−1 +

xi

θ

]
−n+

Σn
i=1xi

θ̂
= 0

θ̂ =
Σn

i=1xi

n
.

Notice that the − ln(xi!) term disappears since it is a constant relative to θ, of which we take the derivative.

4. Independent Shreds, You Say?

You are given 100 independent samples x1, x2, . . . , x100 from Bernoulli(θ), where θ is unknown. (Each sample is
either a 0 or a 1). These 100 samples sum to 30. You would like to estimate the distribution’s parameter θ. Give
all answers to 3 significant digits.

(a) What is the maximum likelihood estimator θ̂ of θ?

Solution:

Note that Σi∈[n]xi = 30, as given in the problem spec. Therefore, there are 30 1s and 70 0s. (Note that
they come in some specific order.) Therefore, we can setup L as follows, because there is a θ chance of
getting a 1, and a (1− θ) chance of getting a 0 and they are each i.i.d. From there, take the log-likelihood,
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then the first derivative, set it equal to 0 and solve for for θ̂.

L(x1, . . . , xn ; θ) = (1− θ)70θ30

lnL(x1, . . . , xn ; θ) = 70 ln (1− θ) + 30 ln θ
∂

∂θ
lnL(x1, . . . , xn ; θ) = − 70

1− θ
+

30

θ

− 70

1− θ̂
+

30

θ̂
= 0

30

θ̂
=

70

1− θ̂

30− 30θ̂ = 70θ̂

θ̂ =
30

100

(b) Is θ̂ an unbiased estimator of θ?

Solution:

An estimator is unbiased if the expectation of the estimator is equal to the original parameter, i.e.: E[θ̂] = θ.
Setting up the expectation of our estimator and plugging it in for the generic case, we get the following,
which we can then reduce with linearity of expectation:

E[θ̂] = E

[
1

100

100∑
i=1

Xi

]

=
1

100

100∑
i=1

E [Xi]

=
1

100
· 100θ = θ.

so it is unbiased.

5. Y Me?

Let y1, y2, ...yn be i.i.d. samples of a random variable with density function

fY (y ; θ) =
1

2θ
exp

(
−|y|

θ

)
.

Find the MLE for θ in terms of |yi| and n.

Solution:

Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied together.
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From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for θ̂.

L(y1, . . . , yn ; θ) =

n∏
i=1

1

2θ
exp

(
−|yi|

θ

)

lnL (y1, . . . , yn | θ) =

n∑
i=1

[
− ln 2− ln θ − |yi|

θ

]
∂

∂θ
lnL(y1, . . . , yn ; θ) =

n∑
i=1

[
−1

θ
+

|yi|
θ2

]
n∑

i=1

[
−1

θ̂
+

|yi|
θ̂2

]
= 0

−n

θ̂
+

Σn
i=1|yi|
θ̂2

= 0

θ̂ =
Σn

i=1|yi|
n

6. Bird Watching

You are an ornithologist studying a rare species of birds in a nature reserve. Over a period of 50 days, you record
the number of sightings of this bird (you see x1, x2, ..., x50 birds on each day). Your research has shown that the
number of sightings on this species depends on the average number of monkeys in the reserve, θ1, and the average
number of eagles in the reserve, θ2. After years of studying this rare species in other environments, you’ve found
the number of birds observed on a particular day follows the following distribution:

pX(k) =
1

k!
(θk1 · e−θ1 · θk2 · e−3θ2)

Find the MLE for θ1 and θ2 (i.e., find θ̂1 and θ̂2).

(a) What is the likelihood function? Solution:

Once again, the likelihood of seeing the above samples is just their PDFs multiplied together.

L(x; θ1, θ2) =

50∏
i=1

(
1

xi!
(θxi

1 e−θ1 · θxi
2 e−3θ2)

)

(b) What is the log-likelihood function? Solution:

We take the log of the above and simplify:

ln(L(x; θ1, θ2)) = ln(
50∏
i=1

(
1

xi!
(θxi

1 · e−θ1 · θxi
2 · e−3θ2))) (1)

=

50∑
i=1

(ln(
1

xi!
) + ln(θxi

1 ) + ln(e−θ1) + ln(θxi
2 ) + ln(e−3θ2)) (2)

=
50∑
i=1

(ln(
1

xi!
) + xi ln(θ1)− θ1 + xi ln(θ2) +−3θ2) (3)

(c) We want to find values of θ1 and θ2 that maximize the likelihood function. To do this, we will take the partial
derivative with respective to each of these parameters and solve for the values that make them both zero.
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First, take the partial derivative of the likelihood function with respect to θ1. Solution:

When taking the partial derivative with respect to a certain variable, we take the derivative as usual, but
treat other variables as a constant! So here, we treat θ2 as a constant and derivate with respect to θ1.

∂

∂θ1
(ln(L(x; θ1, θ2)))) =

50∑
i=1

(
xi

θ1
− 1) (4)

=

50∑
i=1

(
xi

θ1
)− 50 (5)

(d) Now, take the partial derivative with respect to θ2. Solution:

Now, we treat θ1 as a constant and derivate with respect to θ2.

∂

∂θ2
(L(ln(x; θ1, θ2))) =

50∑
i=1

(
xi

θ2
− 3) (6)

=
50∑
i=1

(
xi

θ2
)− 150 (7)

(e) Set both these partial derivatives to 0, and solve for θ̂1 and θ̂2. Solution:

We end up with the equations (notice we added the hats to the thetas at this point - since we set these
derivatives to 0, we are now solving for the maximum likelihood estimator):

50∑
i=1

(
xi

θ̂1
)− 50 = 0

50∑
i=1

(
xi

θ̂2
)− 150 = 0

We now solve this system of equations for θ̂1 and θ̂2. The first equation gives us:

50∑
i=1

(
xi

θ̂1
) = 50

(

∑50
i=1 xi

θ̂1
) = 50

θ̂1 = (

∑50
i=1 xi

50
)

With similar steps, we get that:

θ̂2 = (

∑50
i=1 xi

150
)
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7. A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when both
the true mean µ and true variance σ2 are unknown) is what’s called the population variance. That is

θ̂2 =

(
1

n

n∑
i=1

(xi − θ̂1)
2)

)

where θ̂1 = 1
n

∑n
i=1 xi is the MLE of the mean. Is θ̂2 unbiased?

Solution:

Let X = 1
n

∑n
i=1 Xi. Then

E(θ̂2) = E

(
1

n

n∑
i=1

(Xi −X)2

)
= E

(
1

n

n∑
i=1

(X2
i − 2XiX +X

2
)

)

which by linearity of expectation (and distributing the sum) is

=
1

n

n∑
i=1

E(X2
i )− E

(
2

n
X

n∑
i=1

Xi

)
+ E(X

2
)

=
1

n

n∑
i=1

E(X2
i )− 2E(X

2
) + E(X

2
)

=
1

n

n∑
i=1

E(X2
i )− E(X

2
). (∗∗)

We know that for any random variable Y , since V ar(Y ) = E(Y 2)− (E(Y ))2 it holds that

E(Y 2) = V ar(Y ) + (E(Y ))2.

Also, we have E(Xi) = µ, V ar(Xi) = σ2 ∀i and E(X) = µ, V ar(X) = σ2

n . Combining these facts, we get

E(X2
i ) = σ2 + µ2 ∀i and E(X

2
) =

σ2

n
+ µ2.

Substituting these equations into (**) we get

E

(
1

n

n∑
i=1

(Xi −X)2)

)
=

1

n

n∑
i=1

E(X2
i )− E(X

2
) = σ2 + µ2 −

(
σ2

n
+ µ2

)
=

(
1− 1

n

)
σ2.

Thus θ̂2 is not unbiased.

8. It Means Nothing

Suppose x1, x2, . . . , xn are samples from a normal distribution whose mean is known to be µ but the variance
is unknown. How does the maximum likelihood estimator for the variance differ from the maximum likelihood
estimator when both mean and variance are unknown? Which if any is unbiased? Solution:
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Begin with the same derivation as before, however we now use µ instead of the mean of 0, which gets us:

L(x1, . . . , xn ; σ
2) =

n∏
i=1

1√
2πσ2

exp
−(x− µ)2

2σ2

lnL(x1, . . . , xn ; σ
2) =

n∑
i=1

− ln
√
2πσ2 − (xi − µ)2

2σ2

=

n∑
i=1

−1

2
ln 2πσ2 − (xi − µ)2

2σ2

=

n∑
i=1

−1

2
ln 2π − 1

2
lnσ2 − (xi − µ)2

2σ2

= −n

2
ln 2π − n

2
lnσ2 − Σn

i=1(xi − µ)2

2σ2

∂

∂σ2
lnL(x1, . . . , xn ; σ

2) = − n

2σ2
+

Σn
i=1(xi − µ)2

2σ4
= 0

Σn
i=1(xi − µ)2

2σ4
=

n

2σ2

σ2 =
1

n

n∑
i=1

(xi − µ)2

Then, we do the same but with two parameters, θ1, θ2, the former being the mean, and the latter being the
variance. We can take the derivative with respect to θ2, and do effectively the same as before.

L(x1, . . . , xn ; θ1, θ2) =

n∏
i=1

1√
2πθ2

exp
−(xi − θ1)

2

2θ2

lnL(x1, . . . , xn ; θ1, θ2) =

n∑
i=1

− ln
√

2πθ2 −
(xi − θ1)

2

2θ2

=

n∑
i=1

−1

2
ln 2πθ2 −

(xi − θ1)
2

2θ2

=

n∑
i=1

−1

2
ln 2π − 1

2
ln θ2 −

(xi − θ1)
2

2θ2

= −n

2
ln 2π − n

2
ln θ2 −

Σn
i=1(xi − θ1)

2

2θ2
∂

∂θ2
lnL(x1, . . . , xn ; θ1, θ2) = − n

2θ2
+

Σn
i=1(xi − θ1)

2

2θ22
= 0

Σn
i=1(xi − θ1)

2

2θ22
=

n

2θ2

θ̂2 =
1

n

n∑
i=1

(xi − θ̂1)
2

Now, we just need to find if both estimators are biased or unbiased. We do this by seeing if their expected value
is equal to the original parameter or not. Let’s start with the former. We move the expectation in with linearity
of expectation, and then can identify that the remaining expectation is just the definition of variance (expected
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deviation from the mean squared) and see that it is unbiased.

E[σ̂2] = E

[
1

n

n∑
i=1

(xi − µ)2

]
=

1

n

n∑
i=1

E
[
(xi − µ)2

]
=

1

n

n∑
i=1

σ2 =
1

n
nσ2 = σ2

We do the same with the other estimator, and find that is biased, since it does not reduce down to the true
parameter θ2:

E[θ̂2] = E[
1

n

n∑
i=1

(xi − θ̂1)
2] =

1

n

n∑
i=1

E[(xi − θ̂1)
2] =

1

n

n∑
i=1

θ̂2 =
1

n
nθ̂2 = θ̂2

1

n

n∑
i=1

(xi − µ)2

vs.
1

n

n∑
i=1

(xi − θ̂1)
2

(The former turns out to be unbiased, the latter biased.)

9. Covariance Connection

Let X be the network connection status, where X = 0 represents a stable connection and X = 1 represents an
unstable connection. Let Y be the number of successes in data transmission, taking values in the set {0, 1, 2}. If
X = 0, Y follows a Binomial distribution Bin(2, 0.8), and if X = 1, Y follows a Binomial distribution Bin(2, 0.3).
The probabilities for X are given by P (X = 0) = 0.8 and P (X = 1) = 0.2. Find Cov(X,Y ). (note that we don’t
know that X and Y are independent here!)

Solution:

To calculate the covariance Cov(X,Y ), we need to determine E[X], E[Y ], and E[XY ]. The covariance is then
given by the formula:

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

First, we calculate E[X]: E[X] = 0 · P (X = 0) + 1 · P (X = 1) = 0 · 0.8 + 1 · 0.2 = 0.2

Next, we calculate E[Y ]. First, we calculate E[Y | X = 0] and E[Y | X = 1]. Based on what’s given in the
problem and using the formula for expectation for a binomial: E[Y | X = 0] = 2 · 0.8 = 1.6 and E[Y | X = 1] =
2 · 0.3 = 0.6. Using the law of total expectation:

E[Y ] = E[Y | X = 0]P (X = 0) + E[Y | X = 1]P (X = 1) = 1.6 · 0.8 + 0.6 · 0.2 = 1.4

To compute E[XY ], we first construct the joint PMF for XY and then use the definition of expectation. The
possible values for XY are 0, 1, and 2. Let’s compute the probabilities for each value:

P (XY = 0) = P (X = 0 ∪ Y = 0) = P (X = 0) + P (Y = 0)− P (X = 0 ∩ Y = 0)

= P (X = 0) + P (Y = 0)− P (X = 0)P (Y = 0 | X = 0) = 0.8 + 0.13− 0.8 · 0.22 = 0.898

P (XY = 1) = P (X = 1 ∩ Y = 1) = P (X = 1)P (Y = 1 | X = 1) = 0.2 · (2 · 0.3 · 0.7) = 0.084

P (XY = 2) = P (X = 1 ∩ Y = 2) = P (X = 1)P (Y = 2 | X = 1) = 0.2 · (0.32) = 0.018

In the above calculations, we use that P (Y = 0) = P (Y = 0|X = 0)P (X = 0) + P (Y = 0|X = 1)P (X = 1) =
0.22 · 0.8 + 0.72 · 0.2 = 0.13 Now, using the definition of expectation, we have:

E[XY ] = 0 · 0.898 + 1 · 0.084 + 2 · 0.018 = 0.12
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Therefore, E[XY ] = 0.12. Finally, we calculate the covariance Cov(X,Y ):

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 0.12− 0.2 · 1.4 = −0.16

Therefore, the covariance Cov(X,Y ) is−0.16. The negative covariance of -0.16 between the network connection
status X and the number of successes in data transmission Y indicates an inverse relationship, suggesting that
as the network connection status becomes less stable (i.e., as X = 1), the likelihood of successess in data
transmission decreases, and vice versa, as expected!
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