
Section 8: Solutions

Review of Main Concepts

• Multivariate: Discrete to Continuous:

Discrete Continuous
Joint PMF/PDF pX,Y (x, y) = P(X = x, Y = y) fX,Y (x, y) 6= P(X = x, Y = y)
Joint range/support
ΩX,Y {(x, y) ∈ ΩX × ΩY : pX,Y (x, y) > 0} {(x, y) ∈ ΩX × ΩY : fX,Y (x, y) > 0}
Joint CDF FX,Y (x, y) =

∑
t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =

∫ x

−∞
∫ y

−∞ fX,Y (t, s) dsdt

Normalization
∑

x,y pX,Y (x, y) = 1
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal PMF/PDF pX(x) =
∑

y pX,Y (x, y) fX(x) =
∫∞
−∞ fX,Y (x, y)dy

Expectation E [g(X,Y )] =
∑

x,y g(x, y)pX,Y (x, y) E [g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dxdy

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)
must have ΩX,Y = ΩX × ΩY ΩX,Y = ΩX × ΩY

• Law of Total Probability (r.v. version): If X is a discrete random variable, then

P(A) =
∑

x∈ΩX

P(A|X = x)pX(x) discrete X

• Law of Total Expectation (Event Version): Let X be a discrete random variable, and let events A1, ..., An

partition the sample space. Then,

E [X] =

n∑
i=1

E [X|Ai]P(Ai)

• Conditional Expectation: See table. Note that linearity of expectation still applies to conditional expectation:
E [X + Y |A] = E [X|A] + E [Y |A]

• Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

E [X] =
∑
y

E [X|Y = y] pY (y) discrete version.

• Conditional distributions

Discrete Continuous
Conditional PMF/PDF pX|Y (x|y) =

pX,Y (x,y)
pY (y) fX|Y (x|y) =

fX,Y (x,y)
fY (y)

Conditional Expectation E [X|Y = y] =
∑

x xpX|Y (x|y) E [X|Y = y] =
∫∞
−∞ xfX|Y (x|y)dx

• Continuous Law of Total Probability:

P(A) =

∫
x∈ΩX

P(A|X = x)fX(x)dx

• Continuous Law of Total Expectation:

E [X] =

∫
y∈ΩY

E [X|Y = y] fY (y)dy

• Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then,

P (X ≥ α) ≤ E [X]

α
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• Chebyshev’s Inequality: Suppose Y is a random variable with E [Y ] = µ and Var(Y ) = σ2. Then, for any
α > 0,

P (|Y − µ| ≥ α) ≤ σ2

α2

• (Multiplicative) Chernoff Bound: Let X1, X2, ..., Xn be independent Bernoulli random variables.

Let X = Σn
i=1Xi, and µ = E [X]. Then, for any 0 ≤ δ ≤ 1,

– P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
3

– P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2

1. Content Review

(a) True or false: the Union Bound always gives a result in [0, 1].
Solution:

False. Consider X and Y , which are independent indicator random variables.

Suppose pX(x) =

{
0.75 x = 0

0.25 x = 1
and pY (y) =

{
0.75 y = 0

0.25 y = 1
.

Then we may apply the Union Bound to place a bound on P (X = 0 ∪ Y = 0):

P (X = 0 ∪ Y = 0) ≤ P (X = 0) + P (Y = 0) = 0.75 + 0.75 = 1.5.

In these cases, the Union Bound tells us very little, since the probability of any event occurring is at most
1.

(b) True or false: Markov’s Inequality always gives a non-negative result.
Solution:

True. Markov’s Inequality is

P(X ≥ α) ≤ E [X]

α

as long as X is a non-negative random variable and α > 0. Since X is a non-negative random variable,
E [X] ≥ 0, so E[X]

α ≥ 0.

(c) Suppose C and D are discrete random variables. Then E [C|D = d] =∑
d dpD|C(d|c)∑
c cpC|D(c|d)∫∞

−∞ cfc|ddx

E[C]
E[D]

Solution:

Choice b is the correct answer from the definition of conditional expectation for discrete random variables.

(d) Suppose X and Y are random variables and A is an event. Given that E [X|A] = 4 and E [Y |A] = 10, what is
E [2X + Y /2|A]?

14

18
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9

13

Solution:

Choice d is the correct answer since linearity of expectation still applies to conditional expectation:

E [2X + Y /2|A] = E [2X|A] + E [Y /2|A] = 2E [X|A] + E [Y |A] /2 = 2 · 4 + 10/2 = 8 + 5 = 13.

(e) True or false: Chebyshev’s Inequality can best be described as giving an upper bound on the distribution’s
right tail.
Solution:

False. Chebyshev’s Inequality gives an upper bound on the sum of the probabilties of the left and right
tails of the distribution.

2. Tail bounds

Suppose X ∼ Binomial(6, 0.4). We will bound P(X ≥ 4) using the tail bounds we’ve learned, and compare this to
the true result.

(a) Give an upper bound for this probability using Markov’s inequality. Why can we use Markov’s inequality?
Solution:

We know that the expected value of a binomial distribution is np, so: P(X ≥ 4) ≤ E[X]
4 = 2.4

4 = 0.6. We
can use it since X is nonnegative.

(b) Give an upper bound for this probability using Chebyshev’s inequality. Youmay have to rearrange algebraically
and it may result in a weaker bound. Solution:

P(X ≥ 4) = P(X − 2.4 ≥ 1.6) ≤ P(|X − 2.4| ≥ 1.6) we can add those absolute value signs because that
only adds more possible values, so it is an upper bound on the probability of X − 2.4 ≥ 1.6. Then, using
Chebyshev’s inequality we get:
P(|X − 2.4| ≥ 1.6) ≤ V ar(X)

1.62 = 1.44
1.62 = 0.5625

(c) Give an upper bound for this probability using the Chernoff bound. Solution:

First, we solve for the values of δ that will allow us to use the Chernoff bound. We want (1 + δ)E[X] =
(1 + δ)2.4 = 4. Solving for δ here gives use δ = 2

3 . Now, we can directly plug into the Chernoff bound.
P(X ≥ 4) = P(X ≥ (1 + 2

3 )2.4) ≤ e−( 2
3 )

2E[X]/3 = e−4×2.4/27 ≈ 0.7

(d) Give the exact probability. Solution:

SinceX is a binomial, we know it has a range from 0 to n (or in this case 0 to 6). Thus, the possible values
to satisfy X ≥ 4 are 4, 5, or 6. We plug in the PMF for each to get: P(X ≥ 4) = P(X = 4) + P(X =
5) + P(X = 6) =

(
6
4

)
(0.4)4(0.6)2 +

(
6
5

)
(0.4)5(0.6) +

(
6
6

)
0.46 ≈ 0.1792
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3. Exponential Tail Bounds

Let X ∼ Exp(λ) and k > 1/λ.

(a) Use Markov’s inequality to bound P(X ≥ k).

Solution:

We can use Markov’s inequality here becauseX is non-negative since it is an exponential distribution. We
also know that E[X] = 1/λ because X ∼ Exp(λ). By Markov’s inequality, we get that:

P(X ≥ k) ≤ 1

λk

(b) Use Markov’s inequality to bound P(X < k). Solution:

From Markov’s inequality (and our answer in (a)), we know that P (X ≥ k) ≤ 1
λk . Then,

P (X ≥ k) ≤ 1

λk

−P (X ≥ k) ≥ − 1

λk
multiplying be a negative flips the inequality

1− P (X ≥ k) ≥ 1− 1

λk

P (X < k) ≥ 1− 1

λk
by definition of complement

Note that because we took the complement and the sign flipped, we have now found a lower bound for
P (X < k).

(c) Use Chebyshev’s inequality to bound P(X ≥ k). Solution:

We rearrange algebraically to get into the form to apply Chebyshev’s inequality. We then plug in the
corresponding values and V ar(X) = 1

λ2 .

P(X ≥ k) = P
(
X − 1

λ
≥ k − 1

λ

)
≤ P

(∣∣∣∣X − 1

λ

∣∣∣∣ ≥ k − 1

λ

)
≤ 1

λ2(k − 1/λ)2
=

1

(λk − 1)2

(d) What is the exact formula for P(X ≥ k)? Solution:
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Using the CDF for an exponential distribution and definition of complement:

P(X ≥ k) = 1− P (X ≤ k) = 1− (1− e−λk) = e−λk

(e) For λk ≥ 3, how do the bounds given in parts (a), (c), and (d) compare?

Solution:

e−λk <
1

(λk − 1)2
<

1

λk

so Markov’s inequality gives the worst bound.

4. Robbie’s Late!

Suppose the probability Robbie is late to teaching lecture on a given day is at most 0.01. Do not make any indepen-
dence assumptions.

(a) Use a Union Bound to bound the probability that Robbie is late at least once over a 30-lecture quarter. So-

lution:

Let Ri be the event Robbie is late to lecture on day i for i = 1, ..., 30. Then, by the union bound,

P(late at least once) = P(
30⋃
i=1

Ri)

≤
30∑
i=1

P(Ri) [union bound]

≤
30∑
i=1

0.01 [P(Ri) ≤ 0.01]

= 0.30

(b) Use a Union Bound to bound the probability that Robbie is never late over a 30-lecture quarter. Solution:

As in the previous part, let Ri be the event Robbie is late to lecture on day i for i = 1, ..., 30. Then, by the
union bound, we found that

P(late at least once) ≤ 0.30

The probability Robbie is never late is the complement of the probability he is late at least once over the
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30 lectures. Taking the complement and doing algebra:

P(late at least once) ≤ 0.30

−P(late at least once) ≥ −0.30 [multiplying by negative flips the inequality]

1− P(late at least once) ≥ 1− 0.30

P(never late) ≥ 0.70

Note that we have now found a lower bound for this probability using the union bound because of taking
the complement.

(c) Use a Union Bound to bound the probability that Robbie is late at least once over a 120-lecture quarter.
Solution:

Let Ri be the event Robbie is late to lecture on day i for i = 1, ..., 120. Then, by the union bound,

P(late at least once) = P(
120⋃
i=1

Ri)

≤
120∑
i=1

P(Ri) [union bound]

≤
120∑
i=1

0.01 [P(Ri) ≤ 0.01]

= 1.20

Notice that P(late at least once) ≤ 1.20 is not a very helpful bound since probabilities have to be at most
1 already.

5. Trinomial Distribution

A generalization of the Binomial model is when there is a sequence of n independent trials, but with three outcomes,
where P(outcome i) = pi for i = 1, 2, 3 and of course p1 + p2 + p3 = 1. Let Xi be the number of times outcome i
occurred for i = 1, 2, 3, where X1 +X2 +X3 = n. Find the joint PMF pX1,X2,X3

(x1, x2, x3) and specify its value for
all x1, x2, x3 ∈ R. Solution:

We use a similar argument as for the binomial PMF.
(

n
x1,x2,x3

)
is the number of ways to select which of the n

outcomes result in each of the 3 outcomes. Then, we multiply the probabilities of each trial being the corre-
sponding outcome (e.g., px1

1 is the probability that all x1 trials end up being outcome 1). This gives use the
following PMF:

pX1,X2,X3(x1, x2, x3) =

(
n

x1, x2, x3

) 3∏
i=1

pxi
i =

n!

x1!x2!x3!
px1
1 px2

2 px3
3

where x1 + x2 + x3 = n and are nonnegative integers.

6. Do You “Urn” to Learn More About Probability?

Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let Xi = 1
if the i-th ball selected is white and let it be equal to 0 otherwise. Give the joint probability mass function of

6



(a) X1, X2 Solution:

Here is one way of defining the joint pmf of X1, X2

P(X1 = 1, X2 = 1) = P(X1 = 1)P(X2 = 1 | X1 = 1) =
5

13
· 4

12
=

20

156

P(X1 = 1, X2 = 0) = P(X1 = 1)P(X2 = 0 | X1 = 1) =
5

13
· 8

12
=

40

156

P(X1 = 0, X2 = 1) = P(X1 = 0)P(X2 = 1 | X1 = 0) =
8

13
· 5

12
=

40

156

P(X1 = 0, X2 = 0) = P(X1 = 0)P(X2 = 0 | X1 = 0) =
8

13
· 7

12
=

56

156

(b) X1, X2, X3 Solution:

Instead of listing out all the individual probabilities, we could write a more compact formula for the pmf.
In this problem, the denominator is always P (13, k), where k is the number of random variables in the joint
pmf. And the numerator is P (5, i) times P (8, j) where i and j are the number of 1s and 0s, respectively.

If we wish to compute pX1,X2,X3
(x1, x2, x3), then the number of 1s (i.e., white balls) is x1 + x2 + x3, and

the number of 0s (i.e., red balls) is (1− x1) + (1− x2) + (1− x3). Then, we can write the pmf as follows:

pX1,X2,X3
(x1, x2, x3) =

10!

13!
· 5!

(5− x1 − x2 − x3)!
· 8!

(5 + x1 + x2 + x3)!

7. Successes

Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X1 be the
number of failures preceding the first success, and let X2 be the number of failures between the first 2 successes.
Find the joint pmf of X1 and X2. Write an expression for E[

√
X1X2]. You can leave your answer in the form of a

sum. Solution:

X1 and X2 take on two particular values x1 and x2, when there are x1 failures followed by one success, and
then x2 failures followed by one success. Since the Bernoulli trials are independent the joint pmf is

pX1,X2
(x1, x2) = (1− p)x1p · (1− p)x2p = (1− p)x1+x2p2

for (x1, x2) ∈ ΩX1,X2
= {0, 1, 2, . . .} × {0, 1, 2, . . .}. By the definition of expectation

E[
√
X1X2] =

∑
(x1,x2)∈ΩX1,X2

√
x1x2 · (1− p)x1+x2p2.

8. Continuous joint density

The joint density of X and Y is given by

fX,Y (x, y) =

{
xe−(x+y) x > 0, y > 0

0 otherwise.

and the joint density of W and V is given by

fW,V (w, v) =

{
2 0 < w < v, 0 < v < 1

0 otherwise.
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Are X and Y independent? Are W and V independent?

Solution:

For two random variables X,Y to be independent, we must have fX,Y (x, y) = fX(x)fY (y) for all x ∈ ΩX , y ∈
ΩY . Let’s start withX and Y by finding their marginal PDFs. By definition, and using the fact that the joint PDF
is 0 outside of y > 0, we get:

fX(x) =

∫ ∞

0

xe−(x+y)dy = e−xx

We do the same to get the PDF of Y , again over the range x > 0:

fY (y) =

∫ ∞

0

xe−(x+y)dx = e−y

Since e−xx · e−y = xe−x−y = xe−(x+y) for all x, y > 0, X and Y are independent.

We can see that W and V are not independent simply by observing that ΩW = (0, 1) and ΩV = (0, 1), but ΩW,V

is not equal to their Cartesian product. Specifically, looking at their range of fW,V (w, v). Graphing it with w as
the ”x-axis” and v as the ”y-axis”, we see that :

The shaded area is where the joint pdf is strictly positive. Looking at it, we can see that it is not rectangular,
and therefore it is not the case that ΩW,V = ΩW × ΩV . Remember, the joint range being the Cartesian product
of the marginal ranges is not sufficient for independence, but it is necessary. Therefore, this is enough to show
that they are not independent.
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9. Trapped Miner

A miner is trapped in a mine containing 3 doors.

• D1: The 1st door leads to a tunnel that will take him to safety after 3 hours.

• D2: The 2nd door leads to a tunnel that returns him to the mine after 5 hours.

• D3: The 3rd door leads to a tunnel that returns him to the mine after a number of hours that is Binomial with
parameters (12, 1

3 ).

At all times, he is equally likely to choose any one of the doors. What is the expected number of hours for this miner
to reach safety?

Solution:

Let T = number of hours for the miner to reach safety. (T is a random variable)
Let Di be the event the ith door is chosen. i ∈ {1, 2, 3}. Finally, let T3 be the time it takes to return to the mine
in the third case only (a random variable). Note that the expectation of T3 is 12 ∗ 1

3 because it is binomially
distributed with parameters n = 12, p = 1

3 . By Law of Total Expectation, linearity of expectation, and by applying
the conditional expectations given by the problem statement:

E [T ] = E [T |D1]P(D1) + E [T |D2]P(D2) + E [T |D3]P(D3)

= 3 · 1
3
+ (5 + E [T ]) · 1

3
+ (E [T3 + T ]) · 1

3

= 3 · 1
3
+ (5 + E [T ]) · 1

3
+ (E [T3] + E [T ]) · 1

3

= 3 · 1
3
+ (5 + E [T ]) · 1

3
+ (4 + E [T ]) · 1

3

Solving this equation for E [T ], we get

E [T ] = 12

Therefore, the expected number of hours for this miner to reach safety is 12.

10. Lemonade Stand

Suppose I run a lemonade stand, which costs me $100 a day to operate. I sell a drink of lemonade for $20. Every
person who walks by my stand either buys a drink or doesn’t (no one buys more than one). If it is raining, n1 people
walk by my stand, and each buys a drink independently with probability p1. If it isn’t raining, n2 people walk by my
stand, and each buys a drink independently with probability p2. It rains each day with probability p3, independently
of every other day. Let X be my profit over the next week. In terms of n1, n2, p1, p2 and p3, what is E [X]?
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Solution:

Let R be the event it rains. Let Xi be how many drinks I sell on day i for i = 1, ..., 7. We are interested
in X =

∑7
i=1 (20Xi − 100). We have Xi|R ∼ Binomial(n1, p1), so E [Xi|R] = n1p1. Similarly, Xi|RC ∼

Binomial(n2, p2), so E
[
Xi|RC

]
= n2p2. By the law of total expectation,

µ = E [Xi] = E [Xi|R]P(R) + E
[
Xi|RC

]
P(RC) = n1p1p3 + n2p2(1− p3)

Hence, by linearity of expectation,

E [X] = E

[
7∑

i=1

(20Xi − 100)

]
= 20

7∑
i=1

E [Xi]− 700 = 140µ− 700

= 140 · (n1p1p3 + n2p2(1− p3))− 700.

11. 3 points on a line

Three points X1, X2, X3 are selected at random on a line L (continuous independent uniform distributions). What
is the probability that X2 lies between X1 and X3? Solution:

Let X1, X2, X3 ∼ Unif(0, 1).

P(X1 < X2 < X3) =

∫ ∞

−∞
P(X1 < X2 < X3 | X2 = x) fX2

(x) dx Continuous LoTP

=

∫ ∞

−∞
P(X1 < x,X3 > x) fX2(x) dx Independence of X1, X2, X3

=

∫ ∞

−∞
P(X1 < x) P(x < X3) fX2

(x) dx Independence of X1, X3

=

∫ ∞

−∞
FX1(x) (1− FX3(x)) fX2(x) dx

=

∫ 1

0

x (1− x) 1 dx

=
x2

2
− x3

3

∣∣∣∣1
0

=
1

6
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