
Section 6: Solutions

Review of Main Concepts

• Continuous Random Variable: A continuous random variable X is one for which its cumulative distribution
function FX(x) : R → R is continuous everywhere. A continuous random variable has an uncountably infinite
number of values.

• Cumulative Distribution Function (cdf): For any random variable (discrete or continuous) X, the cumula-
tive distribution function is defined as FX (x) = P (X ≤ x). Notice that this function must be monotonically
nondecreasing: if x < y then FX(x) ≤ FX(y), because P(X ≤ x) ≤ P(X ≤ y). Also notice that since proba-
bilities are between 0 and 1, that 0 ≤ FX(x) ≤ 1 for all x, with limx→−∞ FX(x) = 0 and limx→+∞ FX(x) = 1.
Also, since P (X = k) = 0 for some constant k if X is a continuous random variable, P (X < k) = P (X ≤ k)

• Probability Density Function (pdf or density): LetX be a continuous random variable. Then the probability
density function fX(x) : R → R of X is defined as fX(x) = d

dxFX (x). Turning this around, it means that
FX(x) = P (X ≤ x) =

∫ x

−∞ fX (t) dt. From this, it follows that P(a ≤ X ≤ b) = FX(b)− FX(a) =
∫ b

a
fX(x)dx

and that
∫∞
−∞ fX(x)dx = 1. From the fact that FX(x) is monotonically nondecreasing it follows that fX(x) ≥ 0

for every real number x.

If X is a continuous random variable, note that in general fX (a) 6= P(X = a), since P (X = a) = FX(a) −
FX(a) = 0 for all a. However, the probability that X is close to a is proportional to fX (a): for small δ,
P
(
a− δ

2 < X < a+ δ
2

)
≈ δfX(a).

• i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) if they are
independent and have the same probability mass function or probability density function.

• Discrete to Continuous: To summarize, when going from discrete to continuous, the main differences are
usually - using an integral instead of a summation, and using the density function fX(k) instead of the PMF
P (X = k).

Discrete Continuous
PMF/PDF pX(x) = P(X = x) fX(x) 6= P(X = x) = 0

CDF FX (x) =
∑

t≤x pX(t) FX (x) =
∫ x

−∞ fX (t) dt

Normalization
∑

x pX(x) = 1
∫∞
−∞ fX (x) dx = 1

Expectation E [X] =
∑

x xpX(x) E [X] =
∫∞
−∞ xfX (x) dx

LOTUS E [g(X)] =
∑

x g(x)pX(x) E [g(X)] =
∫∞
−∞ g(x)fX (x) dx

• Law of Total Probability (Continuous): This has not been covered in class yet, but will be soon. A is an
event, and X is a continuous random variable with density function fX(x).

P(A) =

∫ ∞

−∞
P(A|X = x)fX(x)dx

• Zoo of Continuous Random Variables

(a) Uniform: X ∼ Uniform(a, b) iff X has the following probability density function:

fX (x) =

{
1

b−a if x ∈ [a, b]

0 otherwise

E [X] = a+b
2 and V ar(X) = (b−a)2

12 . This represents each real number from [a, b] to be equally likely.

(b) Exponential: X ∼ Exponential(λ) iff X has the following probability density function:

fX (x) =

{
λe−λx if x ≥ 0
0 otherwise
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E [X] = 1
λ and V ar(X) = 1

λ2 . FX (x) = 1 − e−λx for x ≥ 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event,
where λ > 0 is the average number of events per unit time. Note that the exponential measures how
much time passes until the next event (any real number, continuous), whereas the Poisson measures how
many events occur in a unit of time (nonnegative integer, discrete). The exponential random variable X
is memoryless:

for any s, t ≥ 0, P (X > s+ t | X > s) = P(X > t)

The geometric random variable also has this property.

1. Content Review

(a) What is P (X = 4) if X is a continuous random variable?

1

0

not enough information

Solution:

(b). If X is a continuous random variable, the probability it takes on a particular constant is 0 since the
support of X has infinite real values.

(b) The cumulative distribution function for a continuous random variable X is FX(k) =∫ k

−∞ fX(x)dx∫∞
−∞ fX(x)dx∫∞
k

fX(x)dx

d
dkfX(k)

Solution:

(a) We take the integral over the PDF over the appropriate range to get the CDF. Since the CDF is FX(k) =
P (X ≤ k) we take the integral from negative infinity up to k.

(c) The probability density function for a continuous random variable X is fX(k) =∫ k

−∞ fX(x)dx

d
dkFX(k)

Solution:

(b) We take the derivative of the CDF to get the PDF.

(d) True or False. If X is a continuous random variable, E[X] =
∫∞
∞ xfX(x)dx Solution:

True. This is by definition of expectation for continuous random variables. Note the only different from
discrete and that we’re using an integral instead of a summation, and we’re using density instead of prob-
ability!
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(e) True or False. If X is a continuous random variable, V ar(X) = E[X2]− (E[X])2 Solution:

True. This definition for variance applies regardless of whether X is discrete or continuous.

(f) Which of the following follow an Exponential(λ) distribution?

Number of minutes to the first success with λ as average number of successes per minute

Number of successes in the first 1 minute with λ as average number of successes per minute

Time (real number) to the first success with λ as average number of successes per minute

Solution:

(c) The exponential random variable is from our zoo of continuous random variables, and represents the
time (continuous) till the first success. Note that (b) is a Poisson random variable with paramter λ!

2. Uniform2

Robbie decided he wanted to create a “new” type of distribution that will be famous, but he needs some help.
He knows he wants it to be continuous and have uniform density, but he needs help working out some of the
details. We’ll denote a random variable X having the “Uniform-2” distribution as X ∼ Uniform2(a, b, c, d), where
a < b < c < d. We want the density to be non-zero in [a, b] and [c, d], and zero everywhere else. Anywhere the
density is non-zero, it must be equal to the same constant.

(a) Find the probability density function, fX(x). Be sure to specify the values it takes on for every point in
(−∞,∞). (Hint: use a piecewise definition). Solution:

We want our probability density function to have a non-zero, uniform density in the intervals [a, b] and
[c, d], and zero everywhere else. Let ` be that value. Then

fX(x) =

{
` if a ≤ x ≤ b or c ≤ x ≤ d

0 otherwise .

In order for this to be a valid probability density function, we must have
∫∞
−∞ fX(x) dx = 1. Solving,

1 =

∫ ∞

−∞
fX(x) dx =

∫ a

−∞
fX(x) dx+

∫ b

a

fX(x) dx+

∫ c

b

fX(x) dx+

∫ d

c

fX(x) dx+

∫ ∞

d

fX(x) dx

= 0 +

∫ b

a

` dx+ 0 +

∫ d

c

` dx+ 0

= `(b− a) + `(d− c) .

Note that taking the integral over any range that is not [a, b] and [c, d] gives a zero output since fX(x) = 0
outside of those ranges. Rearranging, we get ` = 1

(b−a)+(d−c) , so

fX(x) =

{
1

(b−a)+(d−c) if a ≤ x ≤ b or c ≤ x ≤ d

0 otherwise .

(b) Find the cumulative distribution function, FX(x). Be sure to specify the values it takes on for every point in
(−∞,∞). (Hint: use a piecewise definition).

Solution:
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Let’s keep using ` from before to reduce clutter. Recall that the cumulative distribution function takes an
integral over the probability density function from negative infinity up to x, i.e.,

FX(x) =

∫ x

−∞
fX(t) dt .

We use t as our step variable here to not overload the variable x. Let us consider possible values that x
can take on.

For x < a,

FX(x) =

∫ x

−∞
fX(t) dt = 0 .

For a ≤ x < b,

FX(x) =

∫ x

−∞
fX(t) dt =

∫ a

−∞
fX(t) dt+

∫ x

a

fX(t) dt = `(x− a) .

For b ≤ x < c,

FX(x) =

∫ x

−∞
fX(t) dt =

∫ a

−∞
fX(t) dt+

∫ b

a

fX(t) dt+

∫ x

b

fX(t) dt = `(b− a) .

For c ≤ x < d,

FX(x) =

∫ x

−∞
fX(t) dt =

∫ a

−∞
fX(t) dt+

∫ b

a

fX(t) dt+

∫ c

b

fX(t) dt+

∫ x

c

fX(t) dt = `(b− a) + `(x− c) .

Finally, for x ≥ d,

FX(x) =

∫ x

−∞
fX(t) dt =

∫ a

−∞
fX(t) dt+

∫ b

a

fX(t) dt+

∫ c

b

fX(t) dt+

∫ d

c

fX(t) dt+

∫ x

d

fX(t) dt

= `(b− a) + `(d− c) .

Putting everything together (and now substituting ` = 1
(b−a)+(d−c) ,

FX(x) =



0 if x < a
x−a

(b−a)+(d−c) if a ≤ x < b

b−a
(b−a)+(d−c) if b ≤ x < c

(b−a)+(x−c)
(b−a)+(d−c) if c ≤ x < d

1 if x ≥ d .

3. Create the distribution

Suppose X is a continuous random variable that is uniform on [0, 1) and uniform on [1, 2], but

P(1 ≤ X ≤ 2) = 2 · P(0 ≤ X < 1).

Outside of [0, 2] the density is 0. What is the PDF and CDF of X?

Solution:
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The fact that X is uniform on each of the intervals means that its PDF is constant on each. So,

fX(x) =


c 0 ≤ x < 1

d 1 ≤ x ≤ 2

0 otherwise

Note that FX(1)− FX(0) = c and FX(2)− FX(1) = d. The area under the PDF must be 1, so

1 = FX(2)− FX(0) = FX(2)− FX(1) + FX(1)− FX(0) = d+ c

Additionally,

d = FX(2)− FX(1) = P(1 ≤ X ≤ 2) = 2 · P(0 ≤ X ≤ 1) = 2 · (FX(1)− FX(0)) = 2c

To solve for c and d in our PDF, we need only solve the system of two equations from above: d+ c = 1, d = 2c.
So, d = 2

3 and c = 1
3 . Taking the integral of the PDF yields the CDF, which looks like

FX(x) =


0 x < 0
1
3x 0 ≤ x < 1
2
3x− 1

3 1 ≤ x ≤ 2

1 x > 2

4. Max of uniforms

Let U1, U2, . . . , Un be mutually independent Uniform random variables on (0, 1). Find the CDF and PDF for the
random variable Z = max(U1, . . . , Un).

Solution:

The key idea for solving this question is realizing that the max of n numbers max(a1, ..., an) is less than some
constant c, if and only if each individual number is less than that constant c (i.e. ai < c for all i). Using this
idea, we get

FZ(x) = P(Z ≤ x) = P(max(U1, ..., Un) ≤ x)

= P(U1 ≤ x, ...., Un ≤ x)

= P(U1 ≤ x) · ... · P(Un ≤ x) [independence]

= FU1(x) · ... · FUn(x)

= FU (x)
n [where U ∼ Unif(0, 1)]

So the CDF of Z is

FZ(x) =


0 x < 0

xn 0 ≤ x ≤ 1

1 x > 1

To find the PDF, we take the derivative of each part of the CDF, which gives us the following

fZ(x) =

{
n xn−1 0 ≤ x ≤ 1

0 otherwise
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5. New PDF?

Alex came up with a function that he thinks could represent a probability density function. He defined the potential
pdf for X as f(x) = 1

1+x2 defined on [0,∞). Is this a valid pdf? If not, find a constant c such that the pdf fX(x) =
c

1+x2 is valid. Then find E [X]. (Hints: d
dx (tan

−1 x) = 1
1+x2 , tan π

2 = ∞, and tan 0 = 0.) Solution:

The area under the PDF is 1. So,∫ ∞

0

c

1 + x2
dx = c tan−1 x |∞0 = c

(π
2
− 0
)
= 1

Solving for c gives us c = 2/π. Using our value we found for c, and the definition of expectation we can compute
E[X] as follows:

E [X] =

∫ ∞

0

cx

1 + x2
dx =

2

π

∫ ∞

0

x

1 + x2
dx =

1

π
ln(1 + x2) |∞0 = ∞

6. Throwing a dart

Consider the closed unit circle of radius r, i.e., S = {(x, y) : x2+ y2 ≤ r2}. Suppose we throw a dart onto this circle
and are guaranteed to hit it, but the dart is equally likely to land anywhere in S. Concretely this means that the
probability that the dart lands in any particular area of size A (that is entirely inside the circle of radius R), is equal
to A

Area of whole circle . The density outside the circle of radius r is 0.

LetX be the distance the dart lands from the center. What is the CDF and pdf ofX? What isE [X] and V ar(X)?

Solution:

Since FX(x) is the probability that the dart lands inside the circle of radius x, that probability is the area of a
circle of radius x divided by the area of the circle of radius r (i.e., πx2/πr2). Thus, our CDF looks like

FX(x) =


0 x < 0
x2

r2 0 ≤ x ≤ r

1 x > r

To find the PDF we just need to take the derivative of the CDF, which give us the following:

fX(x) =

{
2x
r2 0 < x ≤ r

0 otherwise

Using the definition of expectation we get

E [X] =

∫ ∞

−∞
xfX(x)dx =

∫ r

0

x
2x

r2
dx =

2

3r2

(
x3
∣∣∣r
0

)
=

2

3
r

We know that V ar(X) = E
[
X2
]
− E [X]

2.

E
[
X2
]
=

∫ ∞

−∞
x2fX(x)dx =

∫ r

0

x2 2x

r2
dx =

2

4r2

(
x4
∣∣∣r
0

)
=

1

2
r2

Plugging this into our variance equation gives

V ar(X) = E
[
X2
]
− E [X]

2
=

1

2
r2 −

(
2

3
r

)2

=
1

18
r2

6



7. A square dartboard?

You throw a dart at an s× s square dartboard. The goal of this game is to get the dart to land as close to the lower
left corner of the dartboard as possible. However, your aim is such that the dart is equally likely to land at any point
on the dartboard. Let random variable X be the length of the side of the smallest square B in the lower left corner
of the dartboard that contains the point where the dart lands. That is, the lower left corner of B must be the same
point as the lower left corner of the dartboard, and the dart lands somewhere along the upper or right edge of B.
For X, find the CDF, PDF, E [X], and V ar(X).

Solution:

Since FX(x) is the probability that the dart lands inside the square of side length x, that probability is the area
of a square of length x divided by the area of the square of length radius s (i.e., x2/r2). Thus, our CDF looks
like

FX(x) =

 0, if x < 0
x2/s2, if 0 ≤ x ≤ s
1, if x > s

To find the PDF, we just need to take the derivative of the CDF, which gives us the following:

fX(x) =
d

dx
FX(x) =

{
2x/s2, if 0 ≤ x ≤ s
0, otherwise

Using the definition of expectation and variance we can compute E [X] and V ar(X) in the following manner:

E [X] =

∫ s

0

xfX(x)dx =

∫ s

0

2x2

s2
dx =

2

s2

∫ s

0

x2dx =
2

3s2
[
x3
]s
0
=

2

3
s

E
[
X2
]
=

∫ s

0

x2fX(x)dx =

∫ s

0

2x3

s2
dx =

2

s2

∫ s

0

x3dx =
1

2s2
[
x4
]s
0
=

1

2
s2

Var(X) = E
[
X2
]
− (E [X])2 =

1

2
s2 −

(
2

3
s

)2

=
1

18
s2

8. Will the battery last?

Suppose that the number of miles that a car can run before its battery wears out is exponentially distributed with
expectation 10,000 miles. If the owner wants to take a 5000 mile road trip, what is the probability that she will
be able to complete the trip without replacing the battery, given that the car has already been used for 2000
miles?

Solution:

Let N be a r.v. denoting the number of miles until the battery wears out. Then N ∼ exp(10, 000−1), because N
measures the ”time” (in this case miles) before an occurrence (the battery wears out) with expectation 10,000.
Since this is an exponential distribution, and the expectation of an exponential distribution is 1

λ , λ = 1
10,000 .

Therefore, via the property of memorylessness of the exponential distribution:

P(N ≥ 5000|N ≥ 2000) = P(N ≥ 3000) = 1− P(N ≤ 3000) = 1−
(
1− e−

3000
10000

)
≈ 0.741

9. Batteries and exponential distributions

Let X1, X2 be independent exponential random variables, where Xi has parameter λi, for 1 ≤ i ≤ 2. Let Y =
min(X1, X2).
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(a) Show that Y is an exponential random variable with parameter λ = λ1 + λ2. Hint: Start by computing
P(Y > y). Two random variables with the same CDF have the same pdf. Why?

Solution:

We start with computing P(Y > y), by substituting in the definition of Y .

P(Y > y) = P(min{X1, X2} > y)

The probability that the minimum of two values is above a value is the chance that both of them are above
that value. From there, we can separate them further because X1 and X2 are independent.

P(X1 > y ∩X2 > y) = P(X1 > y)P(X2 > y) = e−λ1ye−λ2y

= e−(λ1+λ2)y = e−λy

So FY (y) = 1 − P(Y > y) = 1 − e−λy and fY (y) = λe−λy so Y ∼ Exp(λ), since this is the same CDF and
PDF as an exponential distribution with parameter λ = λ1 + λ2.

(b) What is Pr(X1 < X2)? (Use the law of total probability.) The law of total probability hasn’t been covered in
class yet, but will be soon at which point it would be good to revisit this problem!

Solution:

By the law of total probability,

P(X1 < X2) =

∫ ∞

0

P(X1 < X2|X1 = x)fX1
(x)dx =

∫ ∞

0

P(X2 > x)λ1e
−λ1xdx =

∫ ∞

0

e−λ2xλ1e
−λ1xdx =

λ1

λ1 + λ2

(c) You have a digital camera that requires two batteries to operate. You purchase n batteries, labelled 1, 2, . . . , n,
each of which has a lifetime that is exponentially distributed with parameter λ, independently of all other
batteries. Initially, you install batteries 1 and 2. Each time a battery fails, you replace it with the lowest-
numbered unused battery. At the end of this process, you will be left with just one working battery. What is
the expected total time until the end of the process? Justify your answer.

Solution:

Let T be the time until the end of the process. We are trying to find E [T ]. T = Y1 + ... + Yn−1 where Yi

is the time until we have to replace a battery from the ith pair. The reason it there are only n− 1 RVs in
the sum is because there are n− 1 times where we have two batteries and wait for one to fail. By part (a),
the time for one to fail is the min of exponentials, so Yi ∼ Exp(2λ). Hence the expected time for the first
battery to fail is 1

2λ . By linearity and memorylessness, E [T ] =
∑n−1

i=1 E[Y1] =
n−1
2λ .

(d) In the scenario of the previous part, what is the probability that battery i is the last remaining battery as a
function of i? (You might want to use the memoryless property of the exponential distribution that has been
discussed.)

Solution:

If there are two batteries i, j in the flashlight, by part (b), the probability each outlasts each other is 1/2.
Hence, the last battery n has probability 1/2 of being the last one remaining. The second to last battery n−1
has to beat out the previous battery and the nth, so the probability it lasts the longest is (1/2)2 = 1/4. Work
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down inductively to get that the probability the ith is the last remaining is (1/2)n−i+1 for i ≥ 3. Finally the
first two batteries share the remaining probability as they start at the same time, with probability (1/2)n−1

each.

10. Continuous Law of Total Probability?

This has not been covered in class yet, but will be soon.

In this exercise, we will extend the law of total probability to the continuous case.

(a) Suppose we flip a coin with probability U of heads, where U is equally likely to be one of ΩU = {0, 1
n ,

2
n , ..., 1}

(notice this set has size n + 1). Let H be the event that the coin comes up heads. What is P(H)? Solution:

We can use the law of total probability, conditioning on U = k
n for k = 0, ..., n.

P(H) =

n∑
k=0

P(H|U =
k

n
)P(U =

k

n
) =

n∑
k=0

k

n
· 1

n+ 1
=

1

n(n+ 1)

n∑
k=0

k =
1

n(n+ 1)

n(n+ 1)

2
=

1

2

(b) Now suppose U ∼ Uniform(0,1) has the continuous uniform distribution over the interval [0, 1]. Extend the law
of total probability to work for this continuous case. (Hint: you may have an integral in your answer instead
of a sum). Solution:

We can perform basically the same process as above, just using an integral instead of a sum. The values
that U can take on are anywhere in the continuous interval [0, 1], so we integrate over that with respect
to u. Another change is that we have to use the PDF of U , which in this case is 1 everywhere within our
range (since it’s uniformly distributed). Plugging that in we can get the same answer of 1

2 as before.

P(H) =

∫ 1

0

P(H|U = u)fU (u)du =

∫ 1

0

u · 1du =
1

2
[u2]10 =

1

2

(c) Let’s generalize the previous result we just used. SupposeE is an event, andX is a continuous random variable
with density function fX(x). Write an expression for P(E), conditioning on X. Solution:

Set up the same problem as before, only this time we’re not actually solving for anything. Note that we
have to integrate from negative infinity to infinity. We’re technically doing this before as well, however
outside of the bounds of [0, 1], the density is equal to 0 so the whole expression is equal to 0. In the general
case thought, we don’t know the range, so we have to integrate everywhere.

P(E) =

∫ ∞

−∞
P(E|X = x)fX(x)dx

11. Transformations

This has not been covered in class yet and probably won’t be. But if you’re interested, please read Section
4.4 from the textbook.

Suppose X ∼ Uniform(0, 1) has the continuous uniform distribution on (0, 1). Let Y = − 1
λ logX for some λ >

0.

(a) What is ΩY ? Solution:
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ΩY = (0,∞) because log(x) ∈ (−∞, 0) for x ∈ (0, 1). Thus, that range times a necessarily negative number
− 1

λ , will result in a range from 0 to positive infinity.

(b) First write down FX(x) for x ∈ (0, 1). Then, find FY (y) on ΩY . Solution:

FX(x) = x for x ∈ (0, 1) because that is the CDF of the continuous uniform distribution. We find the CDF
of Y by plugging in the given definition of Y and getting into a form where we can use the CDF of X. Let
y ∈ ΩY .

FY (y) = P(Y ≤ y) = P(− 1

λ
logX ≤ y) = P(logX ≥ −λy) = P(X ≥ e−λy) = 1− P(X < e−λy)

Then, because e−λy ∈ (0, 1)
= 1− FX(e−λy) = 1− e−λy

(c) Now find fY (y) on ΩY (by differentiating FY (y) with respect to y. What distribution does Y have? Solution:

fY (y) = F ′
Y (y) = λe−λy

Hence, Y ∼ Exponential(λ).

12. Convolutions

This has not been covered in class. We’re not yet sure if we will have time for it, but if you’re interested,
please read Section 5.5 from the textbook.

Suppose Z = X +Y , where X⊥Y . (⊥ is the symbol for independence. In other words, X and Y are independent.)
Z is called the convolution of two random variables. If X,Y, Z are discrete,

pZ (z) = P(X + Y = z) =
∑
x

P(X = x ∩ Y = z − x) =
∑
x

pX (x) pY (z − x)

If X,Y, Z are continuous,

FZ (z) = P(X + Y ≤ z) =

∫ ∞

−∞
P(Y ≤ z −X|X = x)fX(x)dx =

∫ ∞

−∞
FY (z − x)fX(x)dx

Suppose X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2).

(a) Find an expression for P(X1 < 2X2) using a similar idea to convolution, in terms of FX1
, FX2

, fX1
, fX2. (Your

answer will be in the form of a single integral, and requires no calculations – do not evaluate it). Solution:

We use the continuous version of the “Law of Total Probability” to integrate over all possible values ofX2.
Take the probability that X1 < 2X2 given that value of X2, times the density of X2 at that value.

P(X1 < 2X2) =

∫ ∞

−∞
P(X1 < 2X2|X2 = x2)fX2(x2)dx2 =

∫ ∞

−∞
FX1 (2x2) fX2 (x2) dx2

(b) Find s, where Φ(s) = P(X1 < 2X2) using the fact that linear combinations of independent normal random
variables are still normal. Solution:
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Let X3 = X1 − 2X2, so that X3 ∼ N (µ1 − 2µ2, σ
2
1 + 4σ2

2) (by the reproductive property of normal
distributions)

P(X1 < 2X2) = P(X1 − 2X2 < 0) = P(X3 < 0) = P(
X3 − (µ1 − 2µ2)√

σ2
1 + 4σ2

2

<
0− (µ1 − 2µ2)√

σ2
1 + 4σ2

2

)

= P(Z <
2µ2 − µ1√
σ2
1 + 4σ2

2

) = Φ

(
2µ2 − µ1√
σ2
1 + 4σ2

2

)
→ s =

2µ2 − µ1√
σ2
1 + 4σ2

2
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