Section 6 zoo of random variables :>

Random var.

two "types" of random vars

(INFINITE RANGE)

sometimes the outcome is not discrete (for example time is not discrete)

PMF (prob. mass function) **p**_x(**k**) = **P**(**X**=**k**) two "types" of random vars

(INFINITE RANGE)

sometimes the outcome is not discrete (for example time is not discrete)

PMF (prob. mass function) **p**_x(**k**) = **P**(**X**=**k**) two "types" of random vars

(INFINITE RANGE)

sometimes the outcome is not discrete (for example time is not discrete)

> PMF (prob. mass function) $\mathbf{p}_{\mathbf{x}}(\mathbf{k}) = \mathbf{P}(\mathbf{X}=\mathbf{k}) = \mathbf{0}$

PMF (prob. mass function) **p**_x(**k**) = **P**(**X**=**k**) two "types" of random vars

(INFINITE RANGE)

sometimes the outcome is not discrete (for example time is not discrete)

PDF (prob. **density** function) **f**_x(**k**) != **P**(**X**=**k**)

discrete vs. continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X=x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

Zoo of continuous Rvs

Uniform RV (continuous version)

X~Unif(a, b) randomly takes on any real number between a and b

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$
$$\mathbb{E}[X] = \frac{a+b}{2}$$
$$\operatorname{Var}(X) = \frac{(b-a)^2}{12}$$

Exponential RV

X~Exp(\lambda) tells how much time till a certain event happens (λ *is the rate of time*)

think of this as the "continuous version" of the geometric distribution!

don't confuse this with the Poisson distribution just bc it's related with time, they're very different! (Poisson is *number* of events in a certain time frame)

$$f_{X}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
$$\mathbb{E}[X] = \frac{1}{\lambda}$$
$$Var(X) = \frac{1}{\lambda^{2}}$$
$$F_{X}(x) = 1 - e^{-\lambda x}$$

 $F_{X}(x) = P(X \le x)$ this is the integral of $f_{X}(x)$