
CSE 312: Foundations of Computing II
Quiz Section #5: Review (solutions)

1. Let A and B be events in the same sample space that each have nonzero probability. For each
of the following statements, state whether it is always true, always false, or it depends on
information not given.

(a) If A and B are mutually exclusive, then they are independent.

False

(b) If A and B are independent, then they are mutually exclusive.

False

(c) If P(A) = P(B) = 0.75, then A and B are mutually exclusive.

False

(d) If P(A) = P(B) = 0.75, then A and B are independent.

Depends whether P(A ∩ B) = 9/16

2. Given any set of 18 integers, show that one may always choose two of them so that their
difference is divisible by 17.

By the pigeonhole principle, two of them, say x and y, must have the same remainder when
divided by 17. That means x ≡ y (mod 17), which in turn means 17 divides x − y.

3. Consider the following inequality: a1 + a2 + a3 + a4 + a5 + a6 ≤ 70. A solution to this inequality
over the nonnegative integers is a choice of a nonnegative integer for each of the 6 variables
a1, a2, a3, a4, a5, a6 that satisfies the inequality. To be different, two solutions have to differ on
the value assigned to some ai. How many different solutions are there to the inequality?

This is equivalent to asking how many different solutions are there to the equation a1 + a2 +

a3 + a4 + a5 + a6 + a7 = 70. The answer is
(
76
6

)
.

4. You roll three fair dice, each with a different numbers of faces: die 1 has six faces (numbered
1 … 6), die 2 has eight faces (numbered 1 … 8), and die 3 has twelve faces (numbered 1 … 12).
Let the random variable X be the sum of the three values rolled. What is E[X]?

Let D1,D2,D3 be the values of die 1, die 2, and die 3, respectively. E[D1] = 3.5, E[D2] = 4.5,
and E[D3] = 6.5. Therefore, E[X] = E[D1 +D2 +D3] = E[D1]+E[D2]+E[D3] = 3.5+ 4.5+ 6.5 =
14.5.

5. How many integers in {1, 2, . . . , 360} are divisible by one or more of the numbers 2, 3, and 5?

1



Inclusion-exclusion:

360
2
+

360
3
+

360
5
−

360
2 × 3

−
360

2 × 5
−

360
3 × 5

+
360

2 × 3 × 5
= 180 + 120 + 72 − 60 − 36 − 24 + 12 = 264

6. Suppose a special deck has 4 suits with 5 cards in each suit. It is shuffled well and then
dealt into 5 piles of 4 cards each. Let Ei refer to the event that pile i has exactly one spade.
Compute the probability P(E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5).

20 · 16 · 12 · 8 · 4
20 · 19 · 18 · 17 · 16

≈ 0.066

7. You are trying to diagnose the probability that a patient with a positive blood sugar test
result has diabetes, even though she is in a low risk group. The probability of a woman in
this group having diabetes is 0.8%. 90% of women with diabetes will test positive in the blood
sugar test. 7% of women without diabetes will test positive in the blood sugar test. Your
patient tests positive in the blood sugar test. What is the probability that she has diabetes?

Let D be the event that she has diabetes and + be the event of a positive test.

P(D | +) =
P(+ | D)P(D)

P(+ | D)P(D) + P(+ | D)P(D)
=

0.9 × 0.008
0.9 × 0.008 + 0.07 × 0.992

≈ 0.09

Notice that the posterior probability 0.09 of diabetes is approximately 10 times as great as
the prior probability 0.008 of diabetes, but still small.

8. A very long multiple choice exam has 4 choices for each question. Charlie has studied enough
so that he knows the correct answer for 1/2 of the questions; for an additional 1/4 of the
questions he can eliminate one choice and chooses randomly and uniformly among the other
three, and for the remaining 1/4 of the questions he chooses randomly and uniformly among
all four answers.

As the teacher, you want to determine how many answers the student actually knows. For
a randomly chosen question, if Charlie answers it correctly, what is the probability he knew
the answer?

Let C be the event that Charlie has the correct answer and K be the event that Charlie knew
the answer. Then

P(C) =
1
2
· 1 +

1
4
·

1
3
+

1
4
·

1
4
=

31
48

P(K | C) =
P(C | K)P(K)
P(C)

=
1 · 1

2

31/48
=

24
31
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9. The space shuttle has 6 O-rings: these were involved in the Challenger disaster. When the
space shuttle is launched, each O-ring has a probability of failure of 0.0137, independent of
whether other O-rings fail.

(a) What is the probability that, during 23 launches, no O-ring will fail, but that at least
one O-ring will fail during the 24th launch?

The probability that no O-ring fails on a single launch is (1 − 0.0137)6 ≈ 0.921. The
probability that this happen for 23 launches and doesn’t happen on the 24th launch is
0.92123(1 − 0.921) ≈ 0.0118.

(b) What is the probability that no O-ring fails during 24 launches?

0.92124 ≈ 0.137

10. Suppose you record the birthdays of a large group of people, one at a time, until you have
found a person whose birthday matches your own birthday. What is the probability that it
takes exactly 20 people for this to occur? Assume that there are 365 possible birthdays and
each one is equally probable for a randomly chosen person.

This is a geometric distribution: (
364
365

)19 1
365
≈ 0.0026

11. Two fair 6-sided dice are thrown n times in succession.

(a) Compute the probability that double 6 (i.e., 6 on each die) appears at least once in the
n throws.

The probability that double 6 does not occur is
(

35
36

)n
, so the probability that it occurs

at least once is 1 −
(

35
36

)n
.

(b) How large need n be to make this probability at least 1/2?

Solving 1 −
(

35
36

)n
≥ 1

2 gives the solution n ≥ 24.6. Since n must be an integer, n ≥ 25.

12. You are working on a difficult passage from a new piece you are learning on the piano. You
wish to play it correctly 4 times before stopping for the day. If your probability of playing it
correctly on each attempt is 2/3, and the attempts are independent (unfortunately!), what is
the probability that you have to play it at least 8 times?

This is equivalent to asking the probability that, in the first 7 attempts, you play it correctly
3 or fewer times. Let X be the number of times you play it correctly in the first 7 attempts.
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Then X ∼ Bin(7, 2/3).

P(X ≤ 3) =
(
7
0

) (
2
3

)0 (
1
3

)7

+

(
7
1

) (
2
3

)1 (
1
3

)6

+

(
7
2

) (
2
3

)2 (
1
3

)5

+

(
7
3

) (
2
3

)3 (
1
3

)4

=
379
37 ≈ 0.173

13. The probability that a customer pays with cash is 40%, independent of other customers. Find
the probability that the 12th customer to arrive at the cashier is the 8th one that pays with
cash.

(
11
7

)
(0.4)7(0.6)4(0.4) ≈ 0.028

14. Let X be the outcome of rolling a fair 6-sided die once. Let Y be the sum of the outcomes of
rolling the same die n times independently.

(a) Compute E[X].
E[X] =

1
6

(1 + 2 + 3 + 4 + 5 + 6) =
7
2

(b) Compute Var(X) and the standard deviation σ of X.

E[X2] =
1
6

(1 + 4 + 9 + 16 + 25 + 36) =
91
6

Var[X] = E[X2] − (E[X])2 =
91
6
−

(
7
2

)2

=
35
12

σ =

√
35
12
≈ 1.7

(c) Compute E[Y].

For 1 ≤ i ≤ n, let Xi be the outcome of the i-th die roll.

E[Y] = E
 n∑

i=1

Xi

 = n∑
i=1

E[Xi] =
n∑

i=1

7
2
=

7
2

n

(d) Compute Var(Y).

Because X1, X2, . . . , Xn are independent,

Var(Y) = Var
 n∑

i=1

Xi

 = n∑
i=1

Var(Xi) =
n∑

i=1

35
12
=

35
12

n
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15. For n > 1, let a1, ..., an ∈ [0, 1]. Show that there exist numbers x1, ..., xn ∈ {−1, 0, 1} not all zero
such that

∣∣∣∑n
i=1 aixi

∣∣∣ ≤ n
2n − 2

.

First realize that, by the pigeonhole principle, for an interval of length `, if you put k points
in them, there must be two such that the distance between them is ≤ `

k − 1
. To see this, split

the interval [0, `] into k−1 equal length subintervals:
[
0,
`

k − 1

]
,

[
`

k − 1
,

2`
k − 1

]
, ...,

[
(k − 2)`

k − 1
, 1

]
,

and by the pigeonhole principle, two of the k points must belong to the same interval and
hence have distance between them ≤ `

k − 1
. For each of the 2n − 1 nonempty subsets I ⊆ [n],

consider the sum S I =
∑

i∈I ai. Notice that 0 ≤ S I ≤ n since each 0 ≤ ai ≤ 1. Thus, there
exist nonempty subsets I and J of [n] with I , J such that |S I − S J | ≤

n
2n − 2

, by applying
the previous result with ` = n, k = 2n − 1. Note that |S I − S J | =

∣∣∣∑i∈I ai −
∑

j∈J a j
∣∣∣. For each

k = 1, ..., n, define xk = 1 if ak ∈ I \ J, xk = 0 if ak ∈ I ∩ J, and xk = −1 if ak ∈ J \ I. Then
|S I − S J | =

∣∣∣∑i∈I ai −
∑

j∈J a j
∣∣∣ = ∣∣∣∑n

i=1 aixi
∣∣∣ ≤ n

2n − 2
.

16. At a reception, n people give their hats to a hat-check person. When they leave, the hat-check
person gives each of them a hat chosen at random from the hats that remain. What is the
expected number of people who get their own hats back?

For 1 ≤ i ≤ n, let

Xi =

{
1, if i-th person gets own hat back
0, otherwise

E[X] = E

 n∑
i=1

Xi

 = n∑
i=1

E[Xi]

=

n∑
i=1

(1 · P(Xi = 1) + 0 · P(Xi = 0))

=

n∑
i=1

P(i-th person gets own hat back)

=

n∑
i=1

1
n
= 1
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