H\"%/ ? S)\ U\ﬁ 6\/\5 UP WQ‘/ @v\\)‘

Randomized Algorithms | &2

Announcements

Last two concept checks (27, 28) available tonight.

CACC27 (today’s content) due Friday morning
L—CC28 (end-of-quarter-wrap-up) due Monday morning

You can fill that out tonight, don't need to look ahead at lecture content.

What's a randomized algorithm?

A randomized algorithm is an algorithm that uses randomness in the
computation. T

Well, ok.
Let's get a little more specific.

Two common types of algorithms

ﬁ_as Vegas Algorithm

Always tells you the right answer
(’:‘Takes varying amounts of time.

(I\/Ionte Carlo Algorithm

Usually tells you the right answer. Sometimes the wrong one.

A classic Las Vegas Algorithm

Remember Quick Sort?

{5 Pick 3 "pivot element

Move all the elements smaller than the pivot to the left subarray (in no particular
order)

Move all elements greater than the pivot element to the right subarray (in no
particular order)

Make two recursive calls

It's sometimes implemented as a Las Vegas Algorithm.

That is, you'll always get the same answer (there's only one sorted array)
but the time can vary.

https: / /www.youtube.com/watch2v=ywWBy6)59gz8

Quick Sort

- O | 50 70 10 60 40 30
]O v

70 60 40 30
30 60
30 60
30 60
30 |40 60 70
i

https://www.youtube.com/watch?v=ywWBy6J5gz8

Total time:

How long does it take?

Well...it depends on what pivots you pick.

About n

[R S e e
v

O (i) work when i elements remaining.
P —

For Simplicity

We'll talk about how quicksort is really done at the end.

For now an easier-to-analyze version:

1f (elements remaining > 1)
{:Eick a pivot uniformly at randoét]
split based on pivot
sortedlLeft = QuickSort (left half)
sortedRight = QuickSort (right half)
return (sortedLeft pivot sortedRight)

What leads to a good time?

[——llivots closer to the midd better. _

e e e e |
Ut IN
e EE N

ideal.

O (logn)
levels.
Db oy =

O (i) work when i elements remaining. -- O(n) per level

Work at each level

How much work do those splits do?

Each call choose a pivot
O (n) total per level

Each element is compared to the pivot and possibly swapped
0(1) per element so 0(n) per level.

So as long as we need at most 0(logn) levels, we'll get the
O(nlogn) running time we need.

We only get the perfect pivot with probablllty . That's not very
likely...maybe we can settle for something more likely.

Focus on an element

Let's focus on one element of the arfay x;.

The recursion will stop when every ele is all alone in their own
subarray.

Call an iteration ”good for x;" if the array containing x; in the next step
is at most ~ > the size I was in the current step.

--éi-- I I
\ J\ I
N |

Pivot here: mlgh’r leave x4 m,\/\ Pivot here: both subqrrqys = 3/4 size. Pivot here: might leave x; in a

a big subarray (if x; is big) Must be good for x;. big subarray (if x; is small)

Good for x;

At least half of the potential pivots guarantee x; ends up with a good
iteration. So we'll use P(x; good iteration) > 1/2

~ _///

It's actually quite a bit more than half for large arrays — one of the two
red subarrays might be good for x; (just bad for the others in the array)

x; Might be our pivot, in which case it's totally done.

To avoid any tedious special cases for small arrays, just say at least 2.

How many levels?

How many levels do we need to go?

Once x4 is Iin a size 1 subarray, it's done. How many iterations does it
take?

If we only had good iterations, we'd need

(E)kn <1on< G)k = k > log, ;3 n.

4) =T ___

| want (at the end of our process) to say with probability at least <blah>)
the running time is at most O(nlogn). —
What's the probability of gt%q—a—tﬁfof good iterations...what's the tool

we should use?
pollev.com /robbie

Needed iterations

\1n(n)

x; is done after log, /s n : () < 4Inn good for x; iterations.
n

P(X <41 <P(Y <41
(X < 4Inn) SP(Y < 4lnm)

Set up for Chernoff
P (Y <|1-4]- 241;1(11)) < exp (— 6—“)

\‘_____’./

1-6§=1/3 =6=2/3

~~——

I~ (54
< N

2 —-12 In(n) 78

Applying Chernoft

So, the probability that x; is not done after 24 In(n) iterations is at most
e—8ln(n)/3 — n—8/3

el

Finishing The bound

So x; is done with probability at least 1 — n=8/3

But x; being done doesn’'t mean the whole algorithm is done...

This argument so far does apply to any other x; -- but they aren't

independent, so....union bound!
-

8
P(algorithm not done)< YP(x; done)= nlP(x;, done)=n-n"3 = n=>/3

—_— S — o) 5
[P(algorithm done)@. \ |

The Theorem

Quicksort

With probability at least 1 — % Quicksort runs in time O(n - log n)

This kind of bound (with probability - 1 as n — o is called a "high

probability bound” we say quicksort needs O (nlogn) time “with high
probability” I

Better than finding a bound on the expected running time!

Want a different bound?

Want an even better probability? You just have to tweak the constant
factors!

Be more careful in defining a “good iteration” or just change 24 In(n) to
48 In(n) or 100 In(n).

It all ends up hidden in the big-O anyway.

That's the power of concentration — the constant coefficient affects the
exponent of the probability.

Common Quicksort Implementations

A common strategy in practice is the "median of three” rule.

Choose three elements (either at random or from specific spots). Take
the median of those for your pivot

Guarantees you don't have the worst possible pivot.

Only a small constant number of extra steps beyond the fixed pivot (find
the median of three numbers is just a few comparisons).

Another strategy: find the true median (very fancy, very impractical: take
421)

I~ Monte Carlo Algorithms

Just some intuition

Algorithms with some probability of failure

There are also algorithms that sometimes give us the wrong answer.
(Monte Carlo Algorithms)

Wait why would we accept a probability of failure?

Suppose your algorithm succeeds with probability only 1/n.
But given two runs of the algorithm, you can tell which is better.
E.g. “find the biggest <blah>" — whichever is bigger is the better one.

How many indeﬁendent runs of the algorithm do we need to get the
right answer with high probability?

Small Probability of Failure

How many independent runs of the algorithm do we need to get the
right answer with high probability?

Probability of failure
k-
(1 — 1) T < ek

n

Choose k = In(n), and we get high probability of success.
So n - In(n) (for example) independent runs gives you the right answer
with high probabillity.

Even with very small chance of success, a moderately larger number of
iterations gives high probability of success. Not a guarantee, but close
enough to a guarantee for most purposes.

[Conditional Expectation Practice

Practice with conditional expectations

Consider of the following process:

Flip a fair coin, if it's heads, pick up a 4-sided die; if it's tails, pick up a 6-
sided die (both fair)

Roll that die independently 3 times. Let X1, X5, X5 be the results of the
three rolls.

Using conditional expectations

Let F be the event “the four sided die was chosen”
E[X,] = P(F)E[X,|F] + P(F)E|[X,|F|
=>.25+--35=3

2 2

E[X,|X; = 5] event X; = 5 tells us we're using the 6-sided die.

E[X,|X3; = 1] We aren’t sure which die we got, but...is it still 50/507

Setup

LetE be the event X; = 1°

1 1 1 1 5
PE) =352 3 m
P(E|F)-P(F
P(F|E) = I'P(E)()
11
_ 37 _3
5/24 5
P(E|F)-P(F) <
N — ' — 62
P(FlE) P(E) = 5/24

good confirmation)

2
5

(we could also get this with LTP, but it's

Analysis

E[X,|X; = 1] = P(F|X5 = DE[X;|X5 = 1 n F] + P(F|X; = 1)E|X,|X5 = 1 n F|
Wait what?
This is the LTE, applied in the space where we've conditioned on X5 = 1.

Everything is conditioned on X3 = 1. Beyond that conditioning, it's LTE.

3 2
—5-2.5+E-3.5—2.9.

A little lower than the unconditioned expectation. Because seeing a 1

has made it ever so slightly more probable that we're using the 4-sided
die.

