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Outline

Last time: Trying to estimate an unknown parameter 𝜃 of a distribution.

We chose the “maximum likelihood estimator”

argmaxθ ℒ(𝑥; 𝜃)

Usually: write likelihood, take log, take derivative, confirm maximum

Today: Continuous RVs What happens when you have two parameters; 
MLEs that aren’t what you expect.



What about continuous random variables?

Can’t use probability, since the probability is going to be 0.

Can use the density! 

It’s supposed to show relative chances, that’s all we’re trying to find 
anyway. 

ℒ(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏; 𝜽) = ∏𝒇𝑿(𝒙𝒊; 𝜽)



Continuous Example

Suppose you get values 𝑥1, 𝑥2, … 𝑥𝑛 from independent draws of a 
normal random variable 𝒩(𝜇, 1) (for 𝜇 unkown)

We’ll also call these “realizations” of the random variable.

ℒ(𝑥𝑖; 𝜇) = ∏𝑖=1
𝑛 1

2𝜋
exp −

1

2
𝑥𝑖 − 𝜇 2

ln(ℒ(𝑥𝑖; 𝜇)) = σ𝑖=1
𝑛 ln

1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2



Finding ො𝜇

ln ℒ = σ𝑖=1
𝑛 ln

1

2𝜋
−

1

2
𝑥𝑖 − 𝜇 2

𝑑

𝑑𝜇
ln ℒ = σ𝑖=1

𝑛 𝑥𝑖 − 𝜇

Setting derivative = 0 and solving:

σ𝑖=1
𝑛 𝑥𝑖 − 𝜇 = 0 ⇒ σ𝑖=1

𝑛 𝑥𝑖 = 𝜇 ⋅ 𝑛 ⇒ Ƹ𝜇 =
σ𝑖=1
𝑛 𝑥𝑖

𝑛

Check using the second derivative test:

𝑑2

𝑑𝜇2
ln(ℒ) = −𝑛

Second derivative is negative everywhere, so log-likelihood is concave down 
and average of the 𝑥𝑖 is a maximizer.



Summary

Given: an event 𝐸 (usually 𝑛 i.i.d. samples from a distribution with 
unknown parameter 𝜃).

1. Find likelihood ℒ(𝐸; 𝜃)
Usually ∏ℙ (𝑥𝑖; 𝜃) for discrete and ∏𝑓(𝑥𝑖; 𝜃) for continuous

2. Maximize the likelihood. Usually:

A. Take the log (if it will make the math easier)

B. Set the derivative to 0 and solve

C. Use the second derivative test to confirm you have a maximizer



Generalizing Normals

We just saw to estimate 𝜇 for 𝒩(𝜇, 1) we get:

ො𝜇 = σ𝑥𝑖/𝑛

Now what happens if we know our data is 𝒩() but both the mean and 
the variance are unknown.?



Log-likelihood

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and variance of a normal 
distribution. Suppose we get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛 from the 
distribution.

ℒ 𝑥1, … , 𝑥𝑛; 𝜃𝜇 , 𝜃𝜎2 = ∏𝑖=1
𝑛 1

𝜃𝜎22𝜋
exp −

1

2
⋅
𝑥𝑖−𝜃𝜇

2

𝜃𝜎2

ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = σ𝑖=1
𝑛 ln

1

𝜃𝜎22𝜋
−

1

2
⋅
𝑥𝑖−𝜃𝜇

2

𝜃𝜎2

With multiple parameters, take 

partial derivatives to find maxima.



Expectation

ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = σ𝑖=1
𝑛 ln

1

𝜃𝜎22𝜋
−

1

2
⋅
𝑥𝑖−𝜃𝜇

2

𝜃𝜎2

𝜕

𝜕𝜃𝜇
ln ℒ =

Setting equal to 0 and solving



Expectation

ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = σ𝑖=1
𝑛 ln

1

𝜃𝜎22𝜋
−

1

2
⋅
𝑥𝑖−𝜃𝜇

2

𝜃𝜎2

𝜕

𝜕𝜃𝜇
ln ℒ = σ𝑖=1

𝑛 𝑥𝑖−𝜃𝜇

𝜃𝜎2

Setting equal to 0 and solving

σ𝑖=1
𝑛 𝑥𝑖−𝜃𝜇

𝜃𝜎2
= 0 ⇒ σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇 = 0 ⇒σ𝑖=1
𝑛 𝑥𝑖 = 𝑛 ⋅ 𝜃𝜇 ⇒𝜃𝜇 =

σ𝑖=1
𝑛 𝑥𝑖

𝑛

𝜕2

𝜕𝜃𝜇
2 = −

𝑛

𝜃𝜎2
𝜃𝜎2 is an estimate of a variance. It’ll never be negative (and 

as long as the draws aren’t identical it won’t be 0). So the second 
derivative is negative and we really have a maximizer.

Arithmetic is nearly 

identical to known 

variance case.



Variance

ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = σ𝑖=1
𝑛 ln

1

𝜃𝜎22𝜋
−

1

2
⋅
𝑥𝑖−𝜃𝜇

2

𝜃𝜎2

Take the partial derivative with respect to 𝜃𝜎2 . It’ll be easier if you apply 
some log and exponent rules first.

log 𝑥𝑦 = 𝑦 ⋅ log(𝑥).

log 𝑎𝑏 = log 𝑎 + log(𝑏).
1

𝑎
= 𝑎−1/2



Variance

ln ℒ 𝑥𝑖; 𝜃𝜇 , 𝜃𝜎2 = σ𝑖=1
𝑛 ln

1

𝜃𝜎22𝜋
−

1

2
⋅
𝑥𝑖−𝜃𝜇

2

𝜃𝜎2

= σ𝑖=1
𝑛 −

1

2
ln 𝜃𝜎2 −

1

2
ln(2𝜋) −

1

2
⋅
𝑥𝑖−𝜃𝜇

2

𝜃𝜎2

= −
𝑛

2
ln 𝜃𝜎2 −

𝑛⋅ln 2𝜋

2
−

1

2𝜃𝜎2
σ𝑖=1
𝑛 𝑥𝑖 − 𝜃𝜇

2

𝜕

𝜕𝜃𝜎2
ln ℒ = −

𝑛

2𝜃𝜎2
+

1

2 𝜃𝜎2
2σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2



Variance part 2

𝜕

𝜕𝜃𝜎2
ln ℒ = −

𝑛

2𝜃𝜎2
+

1

2 𝜃𝜎2
2σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2

−
𝑛

2𝜃𝜎2
+

1

2 𝜃𝜎2
2σ𝑖=1

𝑛 𝑥𝑖 − 𝜃𝜇
2
= 0

⇒ −
𝑛

2
𝜃𝜎2 +

1

2
σ𝑖=1
𝑛 𝑥𝑖 − 𝜃𝜇

2
= 0 (multiply by 𝜃𝜎2

2
)

⇒ 𝜃𝜎2 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 − 𝜃𝜇

2

⇒ ෢𝜃𝜎2 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 −෢𝜃𝜇

2

To get the overall max

We’ll plug in ෢𝜃𝜇



Summary

If you get independent samples 𝑥1, 𝑥2, … , 𝑥𝑛 from a 𝒩(𝜇, 𝜎2) where 𝜇
and 𝜎2are unknown, the maximum likelihood estimates of the normal is:

෢𝜃𝜇 =
σ𝑖=1
𝑛 𝑥𝑖

𝑛
and ෢𝜃𝜎2 =

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 −෢𝜃𝜇

2

The maximum likelihood estimator of the mean is the sample mean that 
is the estimate of 𝜇 is the average value of all the data points.

The MLE for the variance is: the variance of the experiment “choose one 
of the 𝑥𝑖 at random”



Biased

One property we might want from an estimator is for it to be unbiased.

The expectation is taken over the randomness in the samples we drew.
The formula is fixed, the data we draw to evaluate the formula becomes the source 
of the randomness.

So we’re not consistently overestimating or underestimating. 

If an estimator isn’t unbiased then it’s biased.

An estimator መ𝜃 is “unbiased” if

𝔼 መ𝜃 = 𝜃



Are our MLEs unbiased?

෢𝜃𝜇 =
σ𝑖=1
𝑛 𝑥𝑖

𝑛

𝔼 ෢𝜃𝜇 =
1

𝑛
𝔼 σ𝑥𝑖 =

1

𝑛
σ𝔼 𝑥𝑖 =

1

𝑛
⋅ 𝑛 ⋅ 𝜇 = 𝜇

Unbiased!



Are our MLEs biased?

Our estimate for the coin-flips (if we generalized a bit) would be 
num heads

total flips

pollev.com/robbie



Are our MLEs biased?

Our estimate for the coin-flips (if we generalized a bit) would be 
num heads

total flips

What is 𝔼
num heads

total flips
=

𝜃⋅𝑛

𝑛
= 𝜃

Unbiased!



Unbiased?

𝔼 𝜃𝜎2 = 𝔼[
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 −෢𝜃𝜇

2
]

=
1

𝑛
𝔼 σ 𝑥𝑖 −෢𝜃𝜇

2

=
1

𝑛
𝔼 σ𝑥𝑖

2 − 2𝑥𝑖෢𝜃𝜇 +෢𝜃𝜇
2

…

Then an algebraic miracle occurs…

=
𝑛−1

𝑛
⋅ 𝜎2 where 𝜎2 = 𝔼 (𝑥𝑖−𝔼 𝑥𝑖 )^2

Intuition for the algebra miracle:
෢𝜃𝜇 = σ𝑥𝑖/𝑛. So when that gets 

squared, there are terms that have 

𝑥𝑖𝑥𝑗 terms and 𝑥𝑖 ⋅ 𝑥𝑖 terms. 

The 1/𝑛 fraction of terms that are 

𝑥𝑖𝑥𝑖 decrease the variance because 

you can’t deviate from yourself.



Optional: Algebra

Showing MLE of Variance is biased



That Algebraic Miracle

=
1

𝑛
𝔼 σ𝑥𝑖

2 − 2𝑥𝑖෢𝜃𝜇 +෢𝜃𝜇
2

=
1

𝑛
𝔼 σ𝑥𝑖

2 −
1

𝑛
𝔼 σ2𝑥𝑖෢𝜃𝜇 − σ෢𝜃𝜇

2

=
1

𝑛
𝑛𝔼 𝑥1

2 −
1

𝑛
𝔼 2෢𝜃𝜇σ𝑥𝑖 − σ෢𝜃𝜇

2

= 𝔼 𝑥1
2 −

1

𝑛
𝔼 2𝑛෢𝜃𝜇

2
− 𝑛෢𝜃𝜇

2

= 𝔼 𝑥1
2 −

1

𝑛
𝔼 𝑛෢𝜃𝜇

2

= 𝔼 𝑥1
2 − 𝔼 ෢𝜃𝜇

2

෢𝜃𝜇 = σ𝑥𝑖/𝑛



More of That Algebraic Miracle

𝔼 ෢𝜃𝜇
2
= 𝔼

σ𝑥𝑖

𝑛

σ𝑥𝑖

𝑛

=
1

𝑛2
𝔼 σ𝑖≠𝑗 𝑥𝑖 ⋅ 𝑥𝑗 + σ𝑖 𝑥𝑖

2

=
1

𝑛2
𝔼 σ𝑖≠𝑗 𝑥𝑖 ⋅ 𝑥𝑗 +

1

𝑛2
𝔼 σ𝑖 𝑥𝑖

2

=
1

𝑛2
⋅ 𝑛 𝑛 − 1 𝔼 𝑥1 ⋅ 𝑥2 +

1

𝑛2
𝑛𝔼[𝑥1

2]

=
𝑛−1

𝑛
𝔼 𝑥1 𝔼 𝑥1 +

1

𝑛
𝔼 𝑥1

2

This is where the 

𝑥𝑖𝑥𝑖 terms end up

These are the 

𝑥𝑖𝑥𝑖 terms.



Wrapping Up the Algebraic Miracle

𝔼 𝜃𝜎2 = 𝔼 𝑥1
2 − 𝔼 ෢𝜃𝜇

2

Plugging in 𝔼 ෢𝜃𝜇
2
=

𝑛−1

𝑛
𝔼 𝑥1 𝔼 𝑥1 +

1

𝑛
𝔼 𝑥1

2 we get:

𝔼 𝜃𝜎2 = 𝔼 𝑥1
2 −

𝑛−1

𝑛
𝔼 𝑥1 𝔼 𝑥1 +

1

𝑛
𝔼 𝑥1

2

= 𝔼 𝑥1
2 −

𝑛−1

𝑛
𝔼 𝑥1

2 −
1

𝑛
𝔼 𝑥1

2

=
𝑛−1

𝑛
𝔼 𝑥1

2 −
𝑛−1

𝑛
𝔼 𝑥1

2

=
𝑛−1

𝑛
Var(𝑥1)



Not Unbiased

𝔼 ෢𝜃𝜎2 = 𝔼[
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 −෢𝜃𝜇

2
]

=
𝑛−1

𝑛
𝜎2

Which is not what we wanted. This is a biased estimator. But it’s not too 
biased…

The MLE is consistent (under some very mild assumptions), 
but it can be biased or unbiased.

An estimator መ𝜃 is “consistent” if

lim
𝑛→∞

𝔼 መ𝜃 = 𝜃



Correction

The MLE slightly underestimates the true variance.

You could correct for this! Just multiply by 
𝑛

𝑛−1
.

This would give you a formula of:

𝑛

𝑛−1
⋅
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 −෢𝜃𝜇

2

=
1

𝑛−1
σ𝑖=1
𝑛 𝑥𝑖 −෢𝜃𝜇

2
where ෢𝜃𝜇 is the sample mean. 

Called the “sample variance” because it’s the variance you estimate if 
you want an (unbiased) estimate of the variance given only a sample.

If you took a statistics course, you probably learned the square root of 
this as the definition of standard deviation.



What about 𝑋 and 𝑌 from last Friday?

We polled 𝑛 people and said, Flip a coin:
If coin is heads OR you have cheated on a partner, tell me “heads”

If coin is tails AND you have never cheated on a partner, tell me “tails”

𝑋 was the number of people polled who said “heads”

𝑌 was the number of people polled who cheated on a partner.

We’re trying to find an estimator for 𝑌.



What about 𝑋 and 𝑌 from last Friday?

We polled 𝑛 people and said, Flip a coin:
If coin is heads OR you have cheated on a partner, tell me “heads”

If coin is tails AND you have never cheated on a partner, tell me “tails”

𝑋 was the number of people polled who said “heads”

𝑌 was the number of people polled who cheated on a partner.

We’re trying to find an estimator for 𝑌.

We picked the estimator “ ෠𝑌 = 2 𝑋 −
𝑛

2
” 

𝔼 ෠𝑌 = 2 𝔼 𝑋 −
𝑛

2
= 2

𝑛

2
+

𝑛𝑝

2
−

𝑛

2
= 𝑛𝑝 where 𝑝 is fraction of 

people who cheated. I.e., 𝑌 This was an unbiased estimator!



What about 𝑋 and 𝑌 from last Friday?

𝑋 was the number of people polled who said “heads”

𝑌 was the number of people polled who cheated on a spouse.

We’re trying to find an estimator for.

ℒ 𝑋 = 𝑘; 𝑌 = 𝑛−𝑌
𝑘−𝑌

. 5𝑘−𝑌. 5𝑛−𝑘 = 𝑛−𝑌
𝑘−𝑌

. 5𝑛−𝑌

𝑘 − 𝑌 =
𝑛−𝑌

2
⇒ 𝑘 −

𝑛

2
=

𝑌

2
⇒ 𝑌 = 2 𝑘 −

𝑛

2

So this is also an MLE!
This estimator is only handling the randomness in the coin flips, not the 
randomness in who was selected. You get the same answer if you back 
up that far.

The binomial coefficient is maximized when 

it’s 
𝑚
𝑚/2

Analysis is more complicated because we 

can’t use calculus (defined only on integers)



Fun Facts



What’s with the 𝑛 − 1?

Soooooooooo, why is the MLE for variance off?

Intuition 1: when we’re comparing to the real mean, 𝑥1 doesn’t affect the 
real mean (the mean is what the mean is regardless of what you draw). 

But when you compare to the sample mean, 𝑥1 pulls the sample mean 
toward it, decreasing the variance a tiny bit. 

Intuition 2: We only have 𝑛 − 1 “degrees of freedom” with the mean and 
𝑛 − 1 of the data points, you know the final data point. Only 𝑛 − 1 of 
the data points have “information” the last is fixed by the sample mean.



Why does it matter?

When statisticians are estimating a variance from a sample, they usually 
divide by 𝑛 − 1 instead of 𝑛.

They also (with unknown variance) generally don’t use the CLT to 
estimate probabilities.

A “t-test” is used when scientists/statisticians think their data is 
approximately normal, but they don’t know the variance.

They aren’t using the Φ() table, they’re using a different table based on 
the altered variance estimates.



Why use MLEs? Are there other estimators?

If you have a prior distribution over what values of 𝜃 are likely, 
combining the idea of Bayes rule with the idea of an MLE will give you 

Maximum a posteriori probability estimation (MAP)

You pick the maximum value of ℙ(𝜃|𝐸) starting from a known prior over 
possible values of 𝜃.

argmaxθ
ℙ(𝐸|𝜃)⋅ℙ(𝜃)

ℙ(𝐸)
= argmaxθℙ(𝐸|𝜃) ⋅ ℙ(𝜃)

ℙ(𝐸) is a constant, so the argmax is unchanged if you ignore it.

Note when prior is constant, you get MLE!


