Notation comparison

 $\mathbb{P}(X|Y)$ probability of X, conditioned on the **event** Y having happened (Y is a subset of the sample space).

 $\mathbb{P}(X;\theta)$ probability of X, where to properly define our probability space we need to know the extra piece of information θ . Since θ isn't an event, this is not conditioning.

 $\mathcal{L}(X;\theta)$ the likelihood of event X, given that an experiment was run with parameter θ . Likelihoods don't have all the properties we associate with probabilities (e.g. they don't all sum up to 1) and this isn't conditioning on an event (θ is a parameter/rule of how the event could be generated).

Maximizing a Function

CLOSED INTERVALS

Set derivative equal to 0 and solve.

Evaluate likelihood at endpoints and any critical points.

Maximum value must be maximum on that interval.

SECOND DERIVATIVE TEST

Set derivative equal to 0 and solve.

Take the second derivative. If negative everywhere, then the critical point is the maximizer.

Continuous Example

Suppose you get values $x_1, x_2, ... x_n$ from independent draws of a normal random variable $\mathcal{N}(\mu, 1)$ (for μ unknown)

We'll also call these "realizations" of the random variable.

$$\mathcal{L}(x_i; \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x_i - \mu)^2\right)$$
$$\ln(\mathcal{L}(x_i; \mu)) = \sum_{i=1}^n \ln\left(\frac{1}{\sqrt{2\pi}}\right) - \frac{1}{2}(x_i - \mu)^2$$

Summary

Given: an event E (usually n i.i.d. samples from a distribution with unknown parameter θ).

- 1. Find likelihood $\mathcal{L}(E;\theta)$ Usually $\prod \mathbb{P}(x_i;\theta)$ for discrete and $\prod f(x_i;\theta)$ for continuous
- 2. Maximize the likelihood. Usually:
- A. Take the log (if it will make the math easier)
- B. Set the derivative to 0 and solve
- C. Use the second derivative test to confirm you have a maximizer