
More Tail Bounds CSE 312 Spring 24

Lecture 22



Announcements

Sections will go forward as normal this week.

OH are updated on the calendar (a few small tweaks later this week, 
those might go back to “normal”, checking with TAs). 

The UAW and the university reached a tentative agreement late last 
night. We anticipate things being fully ‘back to normal’ within a few 
days.

https://hr.uw.edu/labor/2024/05/14/tentative-agreement-reached-with-uaw-ases


Near the mean

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

ത𝑋 = ∑𝑋𝑖/1000
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Var ത𝑋 Chebyshev’s Inequality
Let 𝑋 be a random variable. For 
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ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)
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Chebyshev’s – Repeated Experiments

How many coin flips (each head with probability 𝑝) are needed until you 
get 𝑛 heads.

Let 𝑋 be the number necessary. What is probability 𝑋 ≥ 2𝑛/𝑝?

Markov

Chebyshev
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Takeaway

Chebyshev gets more powerful as the variance shrinks.

Repeated experiments are a great way to cause that to happen.



More Assumptions → Better Guarantee

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −

𝛿2𝜇

2

(Multiplicative) Chernoff Bound



Same Problem, New Solution

Suppose you run a poll of 1000 people where in the true population 
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Right Tail

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

Want ℙ
𝑋

1000
≥ .7

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇
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Left Tail

Suppose you run a poll of 1000 people where in the true population 
60% of the population supports you. What is the probability that the 
poll is not within 10-percentage-points of the true value?

Want ℙ
𝑋

1000
≤ .5 = ℙ(𝑋 ≤ .5 ⋅ 1000)

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 
Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For 

any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2𝜇
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Both Tails

Let 𝐸 be the event that 𝑋 is not between 500 and 700 (i.e. we’re not 
within 10 percentage points of the true value)

ℙ 𝐸 = ℙ 𝑋 < 500 + ℙ 𝑋 > 700

≤ .0039 + .0003 = .0042

Less than 1%. That’s a better bound than Chebyshev gave!



Wait a Minute

I asked Wikipedia about the “Chernoff Bound” and I saw something 
different?

This is the “easiest to use” version of the bound. If you need something 
more precise, there are other versions. 

Why are the tails different??

The strongest/original versions of “Chernoff bounds” are symmetric (1 +
𝛿 and 1 − 𝛿 correspond), but those bounds are ugly and hard to use.

When computer scientists made the “easy to use versions”, they needed 
to use some inequalities. The numerators now have plain old 𝛿’s, instead 
of 1 + or 1 −. As part of the simplification to this version, there were 
different inequalities used so you don’t get exactly the same expression. 



Wait a Minute

This is just a binomial!
Well if all the 𝑋𝑖 have the same probability. It does work if they’re independent but 
have different distributions. But there’s bigger reasons to care…

The concentration inequality will let you control 𝑛 easily, even as a 
variable. That’s not easy with the binomial.

What happens when 𝑛 gets big?

Evaluating 20000
10000

. 5110000 ⋅.4910000 is fraught with chances for floating 

point error and other issues. Chernoff is much better.



But Wait! There’s More

For this class, please limit yourself to:
Markov, Chebyshev, and Chernoff, as stated in these slides…

But for your information. There’s more.

Trying to apply Chebyshev, but only want a “one-sided” bound (and tired of 
losing that almost-factor-of-two)Try Cantelli’s Inequality

In a position to use Chernoff, but want additive distance to the mean instead 
of multiplicative? They got one of those.

Have a sum of independent random variables that aren’t indicators, but are 
bounded, you better believe Wikipedia’s got one

Have a sum of random matrices instead of a sum of random numbers. Not 
only is that a thing you can do, but the eigenvalue of the matrix concentrates

There’s a whole book of these!

https://en.wikipedia.org/wiki/Cantelli%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_boundAdditive_form_(absolute_error)
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#General_case_of_bounded_random_variables
https://en.wikipedia.org/wiki/Matrix_Chernoff_bound
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/1juclfo/alma991618178901452


Tail Bounds – Takeaways 

Useful when an experiment is complicated and you just need the 
probability to be small (you don’t need the exact value).

Choosing a minimum 𝑛 for a poll – don’t need exact probability of 
failure, just to make sure it’s small.

Designing probabilistic algorithms – just need a guarantee that they’ll 
be extremely accurate 

Learning more about the situation (e.g. learning variance instead of just 
mean, knowing bounds on the support of the starting variables) usually 
lets you get more accurate bounds.



One More Bound



One More Bound

The Union bound

For any events 𝐸, 𝐹
ℙ 𝑬 ∪ 𝑭 ≤ ℙ 𝑬 + ℙ(𝑭)

Union Bound

Proof? ℙ 𝐸 ∪ 𝐹 = ℙ 𝐸 + ℙ 𝐹 − ℙ(𝐸 ∩ 𝐹)

And ℙ 𝐸 ∩ 𝐹 ≥ 0.



Concentration Applications

A common pattern:

Figure out “what could possibly go wrong” – often these are dependent.

Use a concentration inequality for each of the things that could go 
wrong.

Union bound over everything that could go wrong. 



Frogs

There are 20 frogs on each location in a 5x5 grid. Each frog will 
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the 
corresponding edge (pac-man-style).

Bound the probability that at least one square ends up with at least 36 
frogs.

These events are dependent – adjacent squares affect each other! 



Frogs

For an arbitrary location:

There are 100 frogs who could end up there (those above, below, left, 
right, and at that location). Each with probability .2. Let 𝑋 be the number 
that land at the location we’re interested in.

ℙ 𝑋 ≥ 36 = ℙ 𝑋 ≥ 1 + 𝛿 20 ≤ exp −
4

5

2
⋅20

3
≤ 0.015

There are 25 locations. Since all locations are symmetric, by the union 
bound the probability of at least one location having 36 or more frogs is 
at most 25 ⋅ 0.015 ≤ 0.375.
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Applications



Privacy Preservation

A real-world example (adapted from The Ethical Algorithm by Kearns 
and Roth; based on protocol by Warner [1965]).

And gives a sense of how randomness is actually used to protect 
privacy.



Privacy Preservation with Randomness

You’re working with a social scientist. They want to get accurate data on 
the rate at which people cheat on their romantic partners. 

We know about polling accuracy! 

Do a poll, call up a random sample of adults and ask them “have you 
ever cheated on your romantic partner?”

Use a tail-bound to estimate the needed number 𝑛 get a guaranteed 
good estimate, right?

You do that, and somehow, no one says they cheated.



What’s the problem?

People lie. 

Or they might be concerned about you keeping this data.

Databases can be leaked (or infiltrated. Or subpoenaed).

You don’t want to hold this data, and the people you’re calling don’t 
want you to hold this data.



Doing Better With Randomness

You don’t really need to know who was cheating. Just how many people 
were. 

Here’s a protocol:

Please flip a coin. 
If the coin is heads, or you have ever cheated, please tell me “heads”

If the coin is tails and you have not ever cheated, please tell me “tails”



Will it be private?

If you are someone who has cheated, and you report heads can that be 
used against you? Not substantially – just say “no the coin came up 
heads!”

You discover your partner said heads, what’s the probability that they 
cheated? 



Will it be private?

If you are someone who has cheated on your spouse, and you report 
heads can that be used against you? Not substantially – just say “no the 
coin came up heads!”

ℙ 𝐶 𝐻 =
ℙ(𝐻|𝐶)⋅ℙ(𝐶)

ℙ(𝐻)
=

1⋅ℙ(𝐶)
1

2
ℙ(𝐶) +1⋅ℙ(𝐶)

Is this a substantial change?

No. For real world values (~15%) of ℙ(𝐶), the probability estimate would 
increase (to ~26%). But that isn’t too damaging. 


