
Joint Distributions CSE 312 Spring 24

Lecture 19



Announcements

CC from Monday’s lecture (CC18) and today’s lecture (CC19) both due on 
Friday. 

HW5 due tonight, HW6 out tonight (back on that normal schedule)

HW6 has a programming question (and a computation/theoretical 
problem related to it).

The setting is something we haven’t discussed in class, so you might 
find the textbook sections helpful.



Outline of CLT steps

1. Write event you are interested in, in terms of sum of random 
variables.

2. Apply continuity correction if RVs are discrete.
For every real number (values produced by 𝒩), find the nearest value in the 
support of original random variable (what would it round to?)

Rephrase event to include all real numbers that round to target values.

3. Standardize RV to have mean 0 and standard deviation 1.

4. Replace RV with 𝒩(0,1).

5. Write event in terms of Φ

6. Look up in table. 



Polling

Suppose you know that 60% of CSE students support you in your run 
for SAC. If you draw a sample of 30 students, what is the probability that 
you don’t get a majority of their votes.

How are you sampling?

Method 1: Get a uniformly random subset of size 30.

Method 2: Independently draw 30 people with replacement.

Which do we use?



Polling

Method 1 is what’s accurate to what is actually done…

…but we’re going to use the math from Method 2.

Why? 
Hypergometric variable formulas are rough, and for increasing 
population size they’re very close to binomial. 

And we’re going to approximate with the CLT anyway, so…the added 
inaccuracy isn’t a dealbreaker.

If we need other calculations, independence will make any of them 
easier.



Polling

Let 𝑋𝑖 be the indicator for “person 𝑖 in the sample supports you.”

ത𝑋 =
σ𝑖=1
𝑛 𝑋𝑖

30
is the fraction who support you. 

We’re interested in the event ℙ ത𝑋 ≤ .5 .

What is 𝔼 ത𝑋 ? What is Var ത𝑋 ?

𝔼 ത𝑋 =
1

30
𝔼 σ𝑋𝑖 =

.6⋅30

30
=

3

5
.

Var ത𝑋 =
1

302
Var σ𝑋𝑖 =

1

30
⋅ .6 ⋅ .4 =

1

125
.



Using the CLT

ℙ ത𝑋 ≤ .5

𝔼 ത𝑋 =
1

30
𝔼 σ𝑋𝑖 =

.6⋅30

30
=

3

5
.

Var ത𝑋 =
1

302
Var σ𝑋𝑖 =

1

30
⋅ .6 ⋅ .4 =

1

125
.



Using the CLT

ℙ ത𝑋 ≤ .5

= ℙ
ത𝑋−.6

1/ 125
≤

.5−.6

1/ 125

≈ ℙ 𝑌 ≤
.5−.6

1/ 125
where 𝑌~𝒩(0,1)

≈ ℙ(𝑌 ≤ −1.12)

= Φ −1.12 = 1 − Φ 1.12 ≈ 1 − 0.86864 = 0.13136

𝔼 ത𝑋 =
1

30
𝔼 σ𝑋𝑖 =

.6⋅30

30
=

3

5
.

Var ത𝑋 =
1

302
Var σ𝑋𝑖 =

1

30
⋅ .6 ⋅ .4 =

1

125
.



Confidence Intervals

A “confidence interval” tells you the probability (how confident you 
should be) that your random variable fell in a certain range (interval)

Usually “close to its expected value”

ℙ 𝑋 − 𝜇 > 𝜀 ≤ 𝛿

If your RV has expectation equal to the value you’re searching for (like 
our polling example) you get a probability of being “close enough” to 
the target value.



Confidence Intervals

Using the CLT, we estimated the probability of “missing low”

There’s a few drawbacks though

1. Using the CLT we get an estimate, not a guarantee---what if the CLT 
estimate is underestimating the probability of failure?

2. We needed to know the true value to do that computation---if we 
knew the true value, we wouldn’t run the poll!

Some algebra tricks can handle problem 2, but 1 really asks for a new 
tool; we’ll see concentration inequalities next week.



Multiple Random Variables



This lecture and next lecture

Somewhat out-of-place content.

When we introduced multiple random variables, we’ve always had them 
be independent.

Because it’s hard to deal with non-independent random variables.

Today is a crash-course in the toolkit for when you have multiple 
random variables and they aren’t independent.

Going to focus on discrete RVs, we’ll talk about continuous at the end.



Joint PMF, support

For two (discrete) random variables 𝑋, 𝑌 their joint pmf

𝑝𝑋,𝑌 𝑥, 𝑦 = ℙ(𝑋 = 𝑥 ∩ 𝑌 = 𝑦)

When 𝑋, 𝑌 are independent then 𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌(𝑦).



Examples

𝑝𝑋,𝑌 𝑿=1 𝑿=2 𝑿=3 𝑿=4

𝒀=1 1/16 1/16 1/16 1/16

𝒀=2 3/16 0 0 1/16

𝒀=3 0 2/16 0 2/16

𝒀=4 0 1/16 3/16 0

Roll a blue die and a red die. Each 

die is 4-sided.  Let 𝑋 be the blue 

die’s result and 𝑌 be the red die’s 

result. 

Each die (individually) is fair. But 

not all results are equally likely 

when looking at them both 

together.

𝑝𝑋,𝑌 1,2 = 3/16.



Marginals

What if I just want to talk about 𝑋? 

Well, use the law of total probability:

ℙ 𝑋 = 𝑘 = σpartition {𝐸𝑖}
ℙ 𝑋 = 𝑘|𝐸𝑖 ℙ(𝐸𝑖)

and use 𝐸𝑖 to be possible outcomes for 𝑌 For the dice example

ℙ 𝑋 = 𝑘 = σℓ=1
4 ℙ(𝑋 = 𝑘 𝑌 = ℓ ℙ(𝑌 = ℓ)

= σℓ=1
4 ℙ(𝑋 = 𝑘 ∩ 𝑌 = ℓ)

𝑝𝑋 𝑘 = σℓ=1
4 𝑝𝑋,𝑌(𝑘, ℓ)

𝑝𝑋(𝑘) is called the “marginal” distribution for 𝑋 (we “marginalized out” 𝑌) it’s 
the same pmf we’ve always used; the name emphasizes we have gotten rid of 
one of the variables.



Marginals

𝑝𝑋,𝑌 𝑿=1 𝑿=2 𝑿=3 𝑿=4

𝒀=1 1/16 1/16 1/16 1/16

𝒀=2 3/16 0 0 1/16

𝒀=3 0 2/16 0 2/16

𝒀=4 0 1/16 3/16 0

𝑝𝑋 𝑘 = σℓ=1
4 𝑝𝑋,𝑌(𝑘, ℓ)

So

𝑝𝑋 2 =
1

16
+ 0 +

2

16
+

1

16
=

4

16



Different dice

Roll two fair dice independently. 
Let 𝑈 be the minimum of the two 
rolls and 𝑉 be the maximum

Are 𝑈 and 𝑉 independent?

Write the joint distribution in the 
table

What’s 𝑝𝑈(𝑧)? (the marginal for 𝑈)

𝑝𝑈,𝑉 𝑼=1 𝑼=2 𝑼=3 𝑼=4

𝑽=1

𝑽=2

𝑽=3

𝑽=4



Different dice

Roll two fair dice independently. 
Let 𝑈 be the minimum of the two 
rolls and 𝑉 be the maximum

𝑝𝑈 𝑧 =

7

16
if 𝑧 = 1

5

16
if 𝑧 = 2

3

16
if 𝑧 = 3

1

16
if 𝑧 = 4

0 otherwise

𝑝𝑈,𝑉 𝑼=1 𝑼=2 𝑼=3 𝑼=4

𝑽=1 1/16 0 0 0

𝑽=2 2/16 1/16 0 0

𝑽=3 2/16 2/16 1/16 0

𝑽=4 2/16 2/16 2/16 1/16



Joint Expectation

This definition hopefully isn’t surprising at this point (it’s the value of 𝑔
times the probability 𝑔 takes on that value), but it’s good to see.

For a function 𝒈(𝑿, 𝒀), the expectation can be written in terms of 

the joint pmf. 

𝔼 𝒈 𝑿, 𝒀 = ෍

𝒙∈𝛀𝐗

෍

𝒚∈𝛀𝐘

𝒈 𝒙, 𝒚 ⋅ 𝒑𝑿,𝒀(𝒙, 𝒚)

Expectations of joint functions



Conditional Expectation

Waaaaaay back when, we said conditioning on an event creates a new 
probability space, with all the laws holding.

So we can define things like “conditional expectations” which is the 
expectation of a random variable in that new probability space.

𝔼 𝑿 𝑬 = ෍

𝒙∈𝛀

𝒙 ⋅ ℙ(𝑿 = 𝒙|𝑬)

𝔼 𝑿 𝒀 = 𝒚 = ෍

𝒙∈𝛀𝑿

𝒙 ⋅ ℙ 𝑿 = 𝒙 𝒀 = 𝒚



Conditional Expectations

All your favorite theorems are still true. 

For example, linearity of expectation still holds

𝔼 (𝒂𝑿 + 𝒃𝒀 + 𝒄) 𝑬] = 𝒂𝔼 𝑿 𝑬 + 𝒃𝔼 𝒀 𝑬 + 𝒄



Law of Total Expectation

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒌 be a partition of the sample space, then

𝔼[𝑿] =෍
𝒊=𝟏

𝒏

𝔼 𝑿 𝑨𝒊 ℙ(𝑨𝒊)

Let 𝑿, 𝒀 be discrete random variables, then

𝔼[𝑿] =෍
𝒚∈𝛀𝒀

𝔼 𝑿 𝒀 = 𝒚 ℙ(𝒀 = 𝒚)

Similar in form to law of total probability, and the proof goes that way 

as well.



LTE

You will flip 2 (independent, fair coins). Call the number of heads 𝑌. 
Then (independently of the coin flips) draw a geometric random 
variable X from the distribution Exp(𝑌 + 1). 

What is 𝔼[𝑋]?



LTE

You will flip 2 (independent, fair coins). Call the number of heads 𝑌. 
Then (independently of the coin flips) draw a geometric random 
variable X from the distribution Exp(𝑌 + 1). 

What is 𝔼[𝑋]?

𝔼 𝑋

= 𝔼 𝑋 𝑌 = 0 ℙ 𝑌 = 0 + 𝔼 𝑋 𝑌 = 1 ℙ 𝑌 = 1 + 𝔼 𝑋 𝑌 = 2 ℙ 𝑌 = 2

= 𝔼 𝑋 𝑌 = 0 ⋅
1

4
+ 𝔼 𝑋 𝑌 = 1 ⋅

1

2
+ 𝔼 𝑋 𝑌 = 2 ⋅

1

4

=
1

0+1
⋅
1

4
+

1

1+1
⋅
1

2
+

1

2+1
⋅
1

4
=

7

12
.



Conditional PMFs

When we have a multi-step process, we sometimes want a pmf that will 
give us conditional probabilities

𝑝𝑋|𝑌 𝑥 𝑦 =
𝑝𝑋,𝑌(𝑥,𝑦)

𝑝𝑌(𝑦)

Let 𝑌 be the number of heads in two (fair, independent) flips.

Let 𝑋 be the sum of the results of 𝑌 fair, independent die-rolls

𝑝𝑋|𝑌 12 2 =
1

6
⋅
1

6
⋅
1

4
1

4

=
1

36

𝑝𝑋|𝑌 12 1 =
0 ⋅

1

2
1

2

= 0



Analogues for continuous
Everything we saw today has a continuous version.

There are “no surprises”– replace pmf with pdf and sums with integrals. 



Covariance

We sometimes want to measure how “intertwined” 𝑋 and 𝑌 are – how 
much knowing about one of them will affect the other.

If 𝑋 turns out “big” how likely is it that 𝑌 will be “big” how much do they 
“vary together”

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀]

Covariance



Covariance

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌)

That’s consistent with our previous knowledge for independent 
variables. (for 𝑋, 𝑌 independent, 𝔼 𝑋𝑌 = 𝔼 𝑋 𝔼[𝑌]). 

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?
Before you calculate, make a 

prediction. What should it be?



Covariance

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?

Var 𝑋 = Var 𝑌 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 1 − 02 = 1

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼[𝑋]𝔼[𝑌]

𝔼 𝑋𝑌 =
1

2
⋅ −1 ⋅ 1 +

1

2
1 ⋅ −1 = −1

Cov 𝑋, 𝑌 = −1 − 0 ⋅ 0 = −1.

Var 𝑋 + 𝑌 = 1 + 1 + 2 ⋅ −1 = 0



Tail Bounds



What’s a Tail Bound?

When we were finding our margin of error, we didn’t need an exact 
calculation of the probability.

We needed an inequality: the probability of being outside the margin of 
error was at most 5%.

A tail bound (or concentration inequality) is a statement that bounds 
the probability in the “tails” of the distribution (says there’s very little 
probability far from the center) or (equivalently) says that the probability 
is concentrated near the expectation.



Our First bound

To apply this bound you only need to know:

1. it’s non-negative

2. Its expectation. 

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝐤 > 𝟎

ℙ 𝑿 ≥ 𝒌𝔼[𝑿] ≤
𝟏

𝒌

Markov’s Inequality

Two statements are equivalent. 

Left form is often easier to use. 

Right form is more intuitive.





Proof

𝔼 𝑋 = σ𝑥∈Ω 𝑥 ⋅ ℙ(𝑋 = 𝑥)

= ෍

𝑥:𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥) + ෍

𝑥:𝑥<𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥ ෍

𝑥:𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥) + 0

≥ ෍

𝑥:𝑥≥𝑡

𝑡 ⋅ ℙ 𝑋 = 𝑥

= 𝑡 ⋅ ෍

𝑥:𝑥≥𝑡

ℙ 𝑋 = 𝑥

= 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)

𝑥 ≥ 0 whenever ℙ 𝑋 = 𝑥 > 0

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

𝔼 𝑋 ≥ 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)



Example with geometric RV

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. 

Bound the probability that 𝑋 ≥ 12

ℙ 𝑋 ≥ 12 ≤
𝔼 𝑋

12
=

6

12
=

1

2
.

Exact probability?

1 − ℙ 𝑋 < 12 ≈ 1 − 0.865 = .135

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



A Second Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more 
ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



A Second Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more 
ads.

ℙ 𝑋 ≥ 75 ≤
𝔼 𝑋

75
=

25

75
=

1

3

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Useless Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more 
ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Useless Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more 
ads.

ℙ 𝑋 ≥ 20 ≤
𝔼 𝑋

20
=

25

20
= 1.25

Well, that’s…true. Technically.

But without more information we couldn’t hope to do much better. What 
if every page gives exactly 25 ads? Then the probability really is 1.



So…what do we do?

A better inequality!

We’re trying to bound the tails of the distribution. 

What parameter of a random variable describes the tails?

The variance!


