Conditional Expectation

Waaaaaay back when, we said conditioning on an event creates a new
probability space, with all the laws holding.

So we can define things like “conditional expectations” which is the
expectation of a random variable in that new probability space.

E[X|E] = z x-P(X = x|E)
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You will flip 2 (independent, fair coins). Call the number of heads Y.
Then (independently of the coin flips) draw a geometric random
variable X from the distribution Exp(Y + 1).

What is E[X]?
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Analogues for continuous

Everything we saw today has a continuous version.

There are "no surprises”— replace pmf with pdf and sums with integrals.
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Covariance

We sometimes want to measure how “intertwined” X and Y are — how
much knowing about one of them will affect the other.

If X turns out “"big” how likely is it that Y will be “big” how much do they

"vary together”

Covariance

Cov(X,Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

5/9/2024



