Conditional ExpectationWaaaaaay back when, we said conditioning on an event creates a new
probability space, with all the laws holding.So we can define things like "conditional expectations" which is the
expectation of a random variable in that new probability space. $\mathbb{E}[X|E] = \sum_{x \in \Omega} x \cdot \mathbb{P}(X = x|E)$ $\mathbb{E}[X|Y = y] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x|Y = y)$

LTE

You will flip 2 (independent, fair coins). Call the number of heads Y. Then (independently of the coin flips) draw a geometric random variable X from the distribution Exp(Y + 1).

What is $\mathbb{E}[X]$?

Analogues for continuous			
Everything we saw today has a continuous version.			
There are "no surprises"- replace pmf with pdf and sums with integrals.			
		Discrete	Continuous
	Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
	Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
	Normalization	$\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}(x,y)dxdy=1$
	Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
	Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
	Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
	Conditional Expectation	$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$
	Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Covariance

We sometimes want to measure how "intertwined" X and Y are – how much knowing about one of them will affect the other.

If X turns out "big" how likely is it that Y will be "big" how much do they "vary together"

Covariance

 $\operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$