Breaking down the theorem

Central Limit Theorem

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables, with mean μ and variance σ^2 . Let $Y_n = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$ As $n \to \infty$, the CDF of Y_n converges to the CDF of $\mathcal{N}(0, 1)$

A problem

What's the probability that X = 950? (exactly) True value, we can get with binomial: $\binom{1000}{950} \cdot (.95)^{950} \cdot (.05)^{50} \approx .05779$ What does the CLT say?

Approximating a continuous distribution

You buy lightbulbs that burn out according to an exponential distribution with parameter of $\lambda = 1.8$ lightbulbs per year.

You buy a 10 pack of (independent) light bulbs. What is the probability that your 10-pack lasts at least 5 years?

Let X_i be the time it takes for lightbulb i to burn out. Let X be the total time. Estimate $\mathbb{P}(X \ge 5)$.

Confidence Intervals

A "confidence interval" tells you the probability (how confident you should be) that your random variable fell in a certain range (interval)

Usually "close to its expected value"

$$\mathbb{P}(|X - \mu| > \varepsilon) \le \delta$$

If your RV has expectation equal to the value you're searching for (like our polling example) you get a probability of being "close enough" to the target value.