

Continuous Zoo | CSE 312 Spring 24

Let's start with the pmf

For discrete random variables, we defined the pmf: $p_Y(k) = \mathbb{P}(Y = k)$.

We can't have a pmf quite like we did for discrete random variables. Let be a random real number between 0 and 1.

 $\mathbb{P}(X=.1) =$ 1 ∞ ??

Let's try to maintain as many rules as we can…

The probability density function

For Continuous random variables, the analogous object is the

"probability density function" we write $f_x(k)$ instead of $p_x(k)$

Idea: Make it "work right" for events since single outcomes don't make sense.

 $f_X(z) dz = c$ | integrating is analogous to sum.

The probability density function

For Continuous random variables, the analogous object is the "probability density function" we write $f_X(k)$ instead of $p_X(k)$

Idea: Make it "work right" for events since single outcomes don't make sense.

$$
\mathbb{P}(a \le X \le b) = c \qquad \qquad \boxed{\qquad}
$$

$$
\int_a^b f_X(z) dz = c
$$

integrating is analogous to sum.

PDF for uniform

Let X be a uniform real number between 0 and 1.

What should $f_X(k)$ be to make all those events integrate to the right values?

$$
f_X(k) = \begin{cases} 0 & \text{if } k < 0 \text{ or } k > 1 \\ 1 & \text{if } 0 \le k \le 1 \end{cases}
$$

Probability Density Function

So $\mathbb{P}(X=.1) = ?$? $f_X(.1) = 1$

The number that best represents $\mathbb{P}(X = .1)$ is 0. This is different from $f_x(x)$

For continuous probability spaces: Impossible events have probability , but some probability 0 events might be possible.

So...what is $f_X(x)$???

Using the PDF

Let's look at a different pdf… Compare the events: $X \approx .2$ and $X \approx .5$ $\mathbb{P}(0.2 - \epsilon/2 \leq X \leq 0.2 + \epsilon/2)$ What will the pdf give? $\int_{2-\epsilon/2}^{2+\epsilon/2}$ $-2+\epsilon/2$ $f_X(z)$ dz $f_X(.2) \cdot \epsilon$

What happens if we look at the ratio $\mathbb{P}(X \approx 2)$ $\mathbb{P}(X \approx .5)$

Using the PDF

Let's look at a different pdf… Compare the events: $X \approx .2$ and $X \approx .5$ $\mathbb{P}(.2 - \epsilon/2 \leq X \leq .2 + \epsilon/2)$ What will the pdf give? $\int_{2-\epsilon/2}^{\epsilon/2}$ $-2+\epsilon/2$ $f_X(z)$ dz $f_X(.2) \cdot \epsilon$

What happens if we look at the ratio

$$
\frac{\mathbb{P}(X \approx 2)}{\mathbb{P}(X \approx 5)} = \frac{\mathbb{P}\left(2 - \frac{\epsilon}{2} \le X \le 2 + \frac{\epsilon}{2}\right)}{\mathbb{P}\left(5 - \frac{\epsilon}{2} \le X \le 5 + \frac{\epsilon}{2}\right)} = \frac{\epsilon f_X(0.2)}{\epsilon f_X(0.5)} = \frac{f_X(0.2)}{f_X(0.5)}
$$

So what's the pdf?

It's the number that when integrated over gives the probability of an event.

Equivalently, it's number such that:

-integrating over all real numbers gives 1.

-comparing $f_X(k)$ and $f_X(\ell)$ gives the relative chances of X being near k or ℓ .

What's a CDF?

The Cumulative Distribution Function $F_X(k) = \mathbb{P}(X \leq k)$ **analogous to the CDF for discrete variables.**

$$
F_X(k) = \mathbb{P}(X \le k) = \underbrace{\int_{-\infty}^k f_X(z) \, dz}_{\infty}
$$

So how do I get from CDF to PDF? Taking the derivative! d dk $F_X(k) =$ d $\frac{a}{dk}\left(\int_{-\infty}^{k}$ \boldsymbol{k} $f_X(z)$ dz $= f_X(k)$

Comparing Discrete and Continuous

What about expectation?

For a random variable X , we define:

$$
\mathbb{E}[X] = \int_{-\infty}^{\infty} X(z) \cdot f_X(z) \, \mathrm{d}z
$$

Just replace summing over the pmf with integrating the pdf. It still represents the average value of X .

Expectation of a function \times

For any function g and any continuous random variable, X : ∞

Again, analogous to the discrete case; just replace summation with integration and pmf with the pdf.

 $g(X(z)) \cdot f_X(z) dz$

We're going to treat this as a definition.

 $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty}$

Technically, this is really a theorem; since $f()$ is the pdf of X and it only gives relative likelihoods for X , we need a proof to quarantee it "works" for $g(X)$.

Sometimes called "Law of the Unconscious Statistician."

Linearity of Expectation

Still true!

 $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$ For all *X*, *Y*; even if they're continuous.

Won't show you the proof – for just $\mathbb{E}[aX + b]$, it's $\mathbb{E}[aX + b] = \int_{-\infty}^{\infty}$ ∞ $aX(k) + b]f_X(k)$ dk

- $=\int_{-\infty}^{\infty}$ ∞ $aX(k)f_X(k)dk + \int_{-\infty}^{\infty}$ ∞ $bf_{X}(k)dk$
- $= a \int_{-\infty}^{\infty}$ ∞ $X(k) f_X(k) dk + b \int_{-\infty}^{\infty}$ ∞ $f_X(k)dk$
- $= a \mathbb{E}[X] + b$

Let's calculate an expectation

Let X be a uniform random number between a and b .

$$
\mathbb{E}[X] = \int_{-\infty}^{\infty} z \cdot f_X(z) dz
$$

= $\int_{-\infty}^{a} z \cdot 0 dz + \int_{a}^{b} z \cdot \frac{1}{b-a} dz + \int_{b}^{\infty} z \cdot 0 dz$
= $0 + \int_{a}^{b} \frac{z}{b-a} dz + 0$
= $\frac{z^2}{2(b-a)} \Big|_{z=a}^{b} = \frac{b^2}{2(b-a)} - \frac{a^2}{2(b-a)} = \frac{b^2 - a^2}{2(b-a)} = \frac{(b+a)(b-a)}{2(b-a)} = \frac{a+b}{2}$

Let's assemble the variance

$$
Var(X) = E[X2] - (E[X])2
$$

= $\frac{a^{2} + ab + b^{2}}{3} - (\frac{a+b}{2})^{2}$
= $\frac{4(a^{2} + ab + b^{2})}{12} - \frac{3(a^{2} + 2ab + b^{2})}{12}$
= $\frac{a^{2} - 2ab + b^{2}}{12}$
= $\frac{(a-b)^{2}}{12}$

Continuous Uniform Distribution

 $X \sim \text{Unif}(a, b)$ (uniform real number between a and b)

$$
\begin{aligned}\n\begin{bmatrix}\n\text{PDF: } f_X(k) = \begin{cases}\n\frac{1}{b-a} & \text{if } a \le k \le b \\
0 & \text{otherwise}\n\end{cases} \\
\text{CDF: } F_X(k) = \begin{cases}\n0 & \text{if } k < a \\
\frac{k-a}{b-a} & \text{if } a \le k \le b\n\end{cases} \\
\text{IF}[X] = \frac{a+b}{2} \\
\text{Var}(X) = \frac{(b-a)^2}{12}\n\end{aligned}
$$

Continuous Zoo

It's a smaller zoo, but it's just as much fun!

Exponential Random Variable

Like a geometric random variable, but continuous time. How long do we wait until an event happens? (instead of "how many flips until a heads")

Where waiting doesn't make the event happen any sooner.

$$
\int \text{Geometric: } \mathbb{P}(X = k + 1 | X \ge 1) = \mathbb{P}(X = k)
$$

When the first flip is tails, the coin doesn't remember it came up tails, you've made no progress.

For an exponential random variable:

 $\mathbb{P}(X \geq k + 1 \mid X \geq 1) = \mathbb{P}(Y \geq k)$

Exponential random variable

If you take a Poisson random variable and ask "what's the time until the next event" you get an exponential distribution!

Let's find the CDF for an exponential.

Let $Y \sim \text{Exp}(\lambda)$, be the time until the first event, when we see an average of λ events per time unit.

What's $\mathbb{P}(Y > t)$?

What Poisson are we waiting on, and what event for it tells you that $Y > t$?

Exponential random variable

If you take a Poisson random variable and ask "what's the time until the next event" you get an exponential distribution!

Let's find the CDF for an exponential.

Let $Y \sim \text{Exp}(\lambda)$, be the time until the first event, when we see an average of λ events per time unit. What's $\mathbb{P}(Y > t)$?

What Poisson are we waiting on? For $X \sim \text{Poi}(\lambda t) \mathbb{P}(Y > t) = \mathbb{P}(X = 0)$

$$
\mathbb{P}(X = 0) = \frac{(\lambda t)^0 e^{-\lambda t}}{0!} = e^{-\lambda t}
$$

F_Y(t) = $\mathbb{P}(Y \le t) = 1 - e^{-\lambda t}$ (for $t \ge 0$, F_Y(x) = 0 for x < 0)

Find the density

We know the CDF, $F_Y(t) = \mathbb{P}(Y \le t) = 1 - e^{-\lambda t}$

What's the density?

 $f_Y(t) =$

Find the density

We know the CDF, $F_Y(t) = \mathbb{P}(Y \leq t) = 1 - e^{-\lambda t}$ What's the density?

$$
f_Y(t) = \frac{d}{dt} \left(1 - e^{-\lambda t} \right) = 0 - \frac{d}{dt} \left(e^{-\lambda t} \right) = \lambda e^{-\lambda t}.
$$

For $t \geq 0$ it's that expression For $t < 0$ it's just 0.

Side note

I hid a trick in that algebra,

 $\mathbb{P}(X \geq 1) = 1 - \mathbb{P}(X < 1) = 1 - \mathbb{P}(X \leq 1)$

The first step is the complementary law.

The second step is using that \int_1^1 1 $f_X(z)dz=0$

In general, for continuous random variables we can switch out \leq and \lt without anything changing. We can't make those switches for discrete random variables.

Expectation of an exponential

Let $X \sim \text{Exp}(\lambda)$ $\mathbb{E}[X] = \int_{-\infty}^{\infty}$ ∞ $z \cdot f_X(z)$ dz $=\int_0^6$ ∞ $z\cdot \lambda e^{-\lambda z}\,dz$ Let $u = z$; $dv = \lambda e^{-\lambda z} dz$ $(v = -e^{-\lambda z})$ Integrate by parts: $-ze^{-\lambda z}-\int -e^{-\lambda z}\,dz=-ze^{-\lambda z}-\frac{1}{2}$ λ $e^{-\lambda z}$ Definite Integral: $-ze^{-\lambda z}-\frac{1}{2}$ λ $e^{-\lambda z}\big|_{z=0}^{\infty} = (\lim_{z \to \infty}$ →∞ $-ze^{-\lambda z}-\frac{1}{z}$ λ $(e^{-\lambda z}) - (0 - \frac{1}{2})$ λ) By L'Hopital's Rule (lim →∞ − Z $\frac{2}{e^{\lambda z}}$ – 1 $\frac{1}{\lambda e^{\lambda z}}$) – (0 – 1 λ $) = |$ lim →∞ − 1 $\frac{1}{\lambda e^{\lambda z}}$ + 1 λ = 1 λ

Don't worry about the derivation (it's here if you're interested; you're not responsible for the derivation. Just the value.

Variance of an exponential

If $X \sim Exp(\lambda)$ then $Var(X) =$ 1 λ^2

Similar calculus tricks will get you there.

Exponential

 $X \sim \text{Exp}(\lambda)$

Parameter $\lambda \geq 0$ is the average number of events in a unit of time.

$$
f_X(k) = \begin{cases} \lambda e^{-\lambda k} & \text{if } k \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

$$
F_X(k) = \begin{cases} 1 - e^{-\lambda k} & \text{if } k \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

$$
\mathbb{E}[X] = \frac{1}{\lambda}
$$

$$
Var(X) = \frac{1}{\lambda^2}
$$