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Let’s start with the pmf

For discrete random variables, we defined the pmf: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

We can’t have a pmf quite like we did for discrete random variables. Let 
𝑋 be a random real number between 0 and 1.  

ℙ 𝑋 = .1 =
1

∞
??

Let’s try to maintain as many rules as we can…

Use 𝑓𝑋 instead of 𝑝𝑋
to remember it’s 

different .

Discrete Continuous

𝑝𝑌 𝑘 ≥ 0 𝑓𝑋 𝑘 ≥ 0

෍

𝜔

𝑝𝑌(𝜔) = 1 න
−∞

∞

𝑓𝑋(𝑘) d𝑘 = 1



The probability density function

For Continuous random variables, the analogous object is the

“probability density function” we write 𝑓𝑋 𝑘 instead of 𝑝𝑋(𝑘)

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑐 න
𝑎

𝑏

𝑓𝑋 𝑧 d𝑧 = 𝑐 integrating is analogous to sum.
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PDF for uniform

Let 𝑋 be a uniform real number between 0 and 1.

What should 𝑓𝑋(𝑘) be to make all those events integrate to the right 
values?

𝑓𝑋 𝑘 = ቊ
0 if 𝑘 < 0 or 𝑘 > 1
1 if 0 ≤ 𝑘 ≤ 1



Probability Density Function

So ℙ 𝑋 = .1 =? ?

𝑓𝑋 .1 = 1

The number that best represents ℙ(𝑋 = .1) is 0. 

This is different from 𝑓𝑋(𝑥)

So…what is 𝑓𝑋(𝑥)???

For continuous probability spaces:

Impossible events have probability 𝟎, 

but some probability 𝟎 events might be possible.



Using the PDF

Let’s look at a different pdf…

Compare the events: 𝑋 ≈ .2 and 𝑋 ≈ .5

ℙ(.2 − 𝜖/2 ≤ 𝑋 ≤ .2 + 𝜖/2)

What will the pdf give? 2.׬−𝜖/2
−2+𝜖/2

𝑓𝑋 𝑧 d𝑧

𝑓𝑋 .2 ⋅ 𝜖

What happens if we look at the ratio 

ℙ(𝑋≈.2)

ℙ(𝑋≈.5)

.2 .5



Using the PDF

Let’s look at a different pdf…

Compare the events: 𝑋 ≈ .2 and 𝑋 ≈ .5

ℙ(.2 − 𝜖/2 ≤ 𝑋 ≤ .2 + 𝜖/2)

What will the pdf give? 2.׬−𝜖/2
−2+𝜖/2

𝑓𝑋 𝑧 d𝑧

𝑓𝑋 .2 ⋅ 𝜖

What happens if we look at the ratio 

ℙ(𝑋≈.2)

ℙ(𝑋≈.5)
=

ℙ .2−
𝜖

2
≤𝑋≤.2+

𝜖

2

ℙ .5−
𝜖

2
≤𝑋≤.5+

𝜖

2

=
𝜖𝑓𝑋(.2)

𝜖𝑓𝑋(.5)
=

𝑓𝑋 .2

𝑓𝑋(.5)

.2 .5



So what’s the pdf?

It’s the number that when integrated over gives the probability of an 
event. 

Equivalently, it’s number such that:

-integrating over all real numbers gives 1.

-comparing 𝑓𝑋 𝑘 and 𝑓𝑋(ℓ) gives the relative chances of 𝑋 being near 
𝑘 or ℓ. 



CDFs



What’s a CDF?

𝐹𝑋 𝑘 = ℙ 𝑋 ≤ 𝑘 = ∞−׬
𝑘

𝑓𝑋 𝑧 d𝑧

So how do I get from CDF to PDF? Taking the derivative!

d

d𝑘
𝐹𝑋(𝑘) =

d

𝑑𝑘
∞−׬
𝑘

𝑓𝑋 𝑧 d𝑧 = 𝑓𝑋(𝑘)

The Cumulative Distribution Function 𝐹𝑋 𝑘 = ℙ(𝑿 ≤ 𝒌)
analogous to the CDF for discrete variables.



Comparing Discrete and Continuous

Discrete Random Variables Continuous Random Variables

Probability 𝟎 Equivalent to impossible All impossible events have probability 0, but not 

conversely.

Relative Chances PMF: 𝑝𝑋 𝑘 = ℙ(𝑋 = 𝑘) PDF 𝑓𝑋(𝑘) gives chances relative to 𝑓𝑋(𝑘
′)

Events Sum over PMF to get probability Integrate PDF to get probability

Convert from CDF to 

PMF

Sum up PMF to get CDF.

Look for “breakpoints” in CDF to get PMF. 

Integrate PDF to get CDF.

Differentiate CDF to get PDF.

𝔼[𝑿]
෍

𝜔

𝑋(𝜔) ⋅ 𝑝𝑋(𝜔) න
−∞

∞

𝑧 ⋅ 𝑓𝑋 𝑧 d𝑧

𝔼[𝒈 𝑿 ]
෍

𝜔

𝑔 𝑋 𝜔 ⋅ 𝑝𝑋(𝜔) න
−∞

∞

𝑔(𝑧) ⋅ 𝑓𝑋 𝑧 d𝑧

𝐕𝐚𝐫(𝑿) 𝔼 𝑋2 − 𝔼 𝑋 2

𝔼 𝑋2 − 𝔼 𝑋 2 = න
−∞

∞

𝑧 − 𝔼 𝑋 2𝑓𝑋 𝑧 d𝑧



What about expectation?

For a random variable 𝑋, we define:

𝔼 𝑋 = ∞−׬
∞

𝑋(𝑧) ⋅ 𝑓𝑋 𝑧 d𝑧

Just replace summing over the pmf with integrating the pdf.

It still represents the average value of 𝑋.



Expectation of a function

Again, analogous to the discrete case; just replace summation with 
integration and pmf with the pdf.

We’re going to treat this as a definition.

Technically, this is really a theorem; since 𝑓() is the pdf of 𝑋 and it only 
gives relative likelihoods for 𝑋, we need a proof to guarantee it “works” 
for 𝑔(𝑋). 

Sometimes called “Law of the Unconscious Statistician.”

For any function 𝒈 and any continuous random variable, 𝑿:

𝔼 𝒈 𝑿 = ∞−׬
∞

𝒈 𝑿(𝒛) ⋅ 𝒇𝑿 𝒛 𝐝𝒛



Linearity of Expectation

Still true!

Won’t show you the proof – for just 𝔼[𝑎𝑋 + 𝑏], it’s
𝔼 𝑎𝑋 + 𝑏 = ∞−׬

∞
𝑎𝑋 𝑘 + 𝑏 𝑓𝑋(𝑘) d𝑘

= ∞−׬
∞

𝑎𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + ∞−׬
∞

𝑏𝑓𝑋 𝑘 𝑑𝑘

= 𝑎 ∞−׬
∞

𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + 𝑏 ∞−׬
∞

𝑓𝑋 𝑘 𝑑𝑘

= 𝑎𝔼 𝑋 + 𝑏

𝔼 𝒂𝑿 + 𝒃𝒀 + 𝒄 = 𝒂𝔼 𝑿 + 𝒃𝔼[𝒀] + 𝒄
For all 𝑿, 𝒀; even if they’re continuous.



Variance

No surprises here

𝐕𝐚𝐫 𝑿 = 𝔼 𝑿𝟐 − 𝔼 𝑿 𝟐 = න
−∞

∞

𝒇𝑿(𝒌) 𝑿 𝒌 − 𝔼 𝑿 𝟐 𝐝𝒌



Let’s calculate an expectation

Let 𝑋 be a uniform random number between 𝑎 and 𝑏.

𝔼 𝑋 = ∞−׬
∞

𝑧 ⋅ 𝑓𝑋 𝑧 d𝑧

= ∞−׬
𝑎

𝑧 ⋅ 0 d𝑧 + 𝑎׬
𝑏
𝑧 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏׬

∞
𝑧 ⋅ 0 d𝑧

= 0 + 𝑎׬
𝑏 𝑧

𝑏−𝑎
d𝑧 + 0

= ฬ
𝑧2

2(𝑏−𝑎)

𝑏

𝑧=𝑎
=

𝑏2

2(𝑏−𝑎)
−

𝑎2

2 𝑏−𝑎
=

𝑏2−𝑎2

2 𝑏−𝑎
=

𝑏+𝑎 𝑏−𝑎

2 𝑏−𝑎
=

𝑎+𝑏

2



What about 𝔼 𝑔 𝑋

Let 𝑋~Unif(𝑎, 𝑏), what about 𝔼 𝑋2 ?

𝔼 𝑋2 = ∞−׬
∞

𝑧2𝑓𝑋 𝑧 d𝑧

= ∞−׬
𝑎

𝑧2 ⋅ 0 d𝑧 + 𝑎׬
𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏׬

∞
𝑧2 ⋅ 0 d𝑧

= 0 + 𝑎׬
𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 0

=
1

𝑏−𝑎
⋅ ฬ
𝑧3

3

𝑏

𝑧=𝑎
=

1

𝑏−𝑎

𝑏3

3
−

𝑎3

3
=

1

3 𝑏−𝑎
⋅ 𝑏 − 𝑎 𝑎2 + 𝑎𝑏 + 𝑏2

=
𝑎2+𝑎𝑏+𝑏2

3



Let’s assemble the variance

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
𝑎2+𝑎𝑏+𝑏2

3
−

𝑎+𝑏

2

2

=
4(𝑎2+𝑎𝑏+𝑏2)

12
−

3(𝑎2+2𝑎𝑏+𝑏2)

12

=
𝑎2−2𝑎𝑏+𝑏2

12

=
𝑎−𝑏 2

12



Continuous Uniform Distribution

𝑋~Unif(𝑎, 𝑏) (uniform real number between 𝑎 and 𝑏)

PDF: 𝑓𝑋 𝑘 = ൝
1

𝑏−𝑎
if 𝑎 ≤ 𝑘 ≤ 𝑏

0 otherwise

CDF: 𝐹𝑋 𝑘 = ൞

0 if 𝑘 < 𝑎
𝑘−𝑎

𝑏−𝑎
if 𝑎 ≤ 𝑘 ≤ 𝑏

1 if 𝑘 ≥ 𝑏

𝔼 𝑋 =
𝑎+𝑏

2

Var 𝑋 =
𝑏−𝑎 2

12



Continuous Zoo

𝒇𝑿 𝒌 =
𝟏

𝒃 − 𝒂

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒇𝑿 𝒌 = 𝝀𝒆−𝝀𝒌 for 𝒌 ≥ 𝟎

𝔼 𝑿 =
𝟏

𝝀

𝐕𝐚𝐫 𝑿 =
𝟏

𝝀𝟐

𝑿~𝐄𝐱𝐩(𝝀)

𝒇𝑿 𝒌 =
𝟏

𝝈 𝟐𝝅
𝐞𝐱𝐩 −

𝒙 − 𝝁 𝟐

𝟐𝝈𝟐

𝔼 𝑿 = 𝝁
𝐕𝐚𝐫 𝑿 = 𝝈𝟐

𝑿~𝒩(𝝁, 𝝈𝟐)

It’s a smaller zoo, but it’s just as much fun!



Exponential Random Variable

Like a geometric random variable, but continuous time. How long do 
we wait until an event happens? (instead of “how many flips until a 
heads”)

Where waiting doesn’t make the event happen any sooner. 

Geometric: ℙ 𝑋 = 𝑘 + 1 𝑋 ≥ 1) = ℙ(𝑋 = 𝑘)

When the first flip is tails, the coin doesn’t remember it came up tails, 
you’ve made no progress. 

For an exponential random variable:

ℙ 𝑋 ≥ 𝑘 + 1 𝑋 ≥ 1) = ℙ(𝑌 ≥ 𝑘)



Exponential random variable

If you take a Poisson random variable and ask “what’s the time until the 
next event” you get an exponential distribution!

Let’s find the CDF for an exponential.

Let 𝑌~Exp(𝜆), be the time until the first event, when we see an average 
of 𝜆 events per time unit. 

What’s ℙ(𝑌 > 𝑡)? 

What Poisson are we waiting on, and what event for it tells you that 
𝑌 > 𝑡? 



Exponential random variable

If you take a Poisson random variable and ask “what’s the time until the 
next event” you get an exponential distribution!

Let’s find the CDF for an exponential.

Let 𝑌~Exp(𝜆), be the time until the first event, when we see an average 
of 𝜆 events per time unit. What’s ℙ(𝑌 > 𝑡)? 

What Poisson are we waiting on? For 𝑋~Poi(𝜆𝑡) ℙ 𝑌 > 𝑡 = ℙ(𝑋 = 0)

ℙ 𝑋 = 0 =
𝜆𝑡 0𝑒−𝜆𝑡

0!
= 𝑒−𝜆𝑡

𝐹𝑌 𝑡 = ℙ 𝑌 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡 (for 𝑡 ≥ 0, 𝐹𝑌 𝑥 = 0 for 𝑥 < 0)



Find the density

We know the CDF, 𝐹𝑌 𝑡 = ℙ 𝑌 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡

What’s the density?

𝑓𝑌 𝑡 =



Find the density

We know the CDF, 𝐹𝑌 𝑡 = ℙ 𝑌 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡

What’s the density?

𝑓𝑌 𝑡 =
𝑑

𝑑𝑡
1 − 𝑒−𝜆𝑡 = 0 −

𝑑

𝑑𝑡
𝑒−𝜆𝑡 = 𝜆𝑒−𝜆𝑡.

For t ≥ 0 it’s that expression

For 𝑡 < 0 it’s just 0.



Exponential PDF

Red: 𝜆 = 5
Blue: 𝜆 = 2
Purple: 𝜆 = 0.5



Memorylessness

ℙ 𝑋 ≥ 𝑘 + 1 𝑋 ≥ 1 =
ℙ(𝑋≥𝑘+1∩𝑋≥1)

ℙ(𝑋≥1)
=

ℙ(𝑋≥𝑘+1)

1−(1−𝑒−𝜆⋅1)

=
𝑒−𝜆(𝑘+1)

𝑒−𝜆
= 𝑒−𝜆𝑘

What about ℙ(𝑋 ≥ 𝑘) (without conditioning on the first step)?

1 − (1 − 𝑒−𝜆𝑘) = 𝑒−𝜆𝑘

It’s the same!!!

More generally, for an exponential rv 𝑋, ℙ 𝑋 ≥ 𝑠 + 𝑡 𝑋 ≥ 𝑠 = ℙ(𝑋 ≥ 𝑡)



Side note

I hid a trick in that algebra, 

ℙ 𝑋 ≥ 1 = 1 − ℙ 𝑋 < 1 = 1 − ℙ(𝑋 ≤ 1)

The first step is the complementary law.

The second step is using that 1׬
1
𝑓𝑋 𝑧 d𝑧 = 0

In general, for continuous random variables we can switch out ≤ and <
without anything changing. 
We can’t make those switches for discrete random variables.



Expectation of an exponential

Let 𝑋~Exp(𝜆)

𝔼 𝑋 = ∞−׬
∞

𝑧 ⋅ 𝑓𝑋 𝑧 d𝑧

= 0׬
∞
𝑧 ⋅ 𝜆𝑒−𝜆𝑧 𝑑𝑧

Let 𝑢 = 𝑧; 𝑑𝑣 = 𝜆𝑒−𝜆𝑧𝑑𝑧 (𝑣 = −𝑒−𝜆𝑧)

Integrate by parts:−𝑧𝑒−𝜆𝑧 − 𝑒−𝜆𝑧−׬ 𝑑𝑧 = −𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧

Definite Integral:−𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧ȁz=0

∞ = ( lim
𝑧→∞

−𝑧𝑒−𝜆𝑧 −
1

𝜆
𝑒−𝜆𝑧) − (0 −

1

𝜆
)

By L’Hopital’s Rule ( lim
𝑧→∞

−
𝑧

𝑒𝜆𝑧
−

1

𝜆𝑒𝜆𝑧
) − (0 −

1

𝜆
) = lim

𝑧→∞
−

1

𝜆𝑒𝜆𝑧
+

1

𝜆
=

1

𝜆

Don’t worry about the derivation 

(it’s here if you’re interested; 

you’re not responsible for the 

derivation. Just the value.



Variance of an exponential

If X~Exp 𝜆 then Var 𝑋 =
1

𝜆2

Similar calculus tricks will get you there. 



Exponential

𝑋~Exp(𝜆)

Parameter 𝜆 ≥ 0 is the average number of events in a unit of time. 

𝑓𝑋 𝑘 = ቊ𝜆𝑒
−𝜆𝑘 if 𝑘 ≥ 0

0 otherwise

𝐹𝑋 𝑘 = ቊ1 − 𝑒−𝜆𝑘 if 𝑘 ≥ 0
0 otherwise

𝔼 𝑋 =
1

𝜆

Var 𝑋 =
1

𝜆2


