

What about $\mathbb{E}[g(X)]$

```
Let X \sim \text{Unif}(a, b), what about \mathbb{E}[X^2]?
\mathbb{E}[X^2] =
```

Comparing Discrete and Continuous

	Discrete Random Variables	Continuous Random Variables
Probability 0	Equivalent to impossible	All impossible events have probability 0, but not conversely.
Relative Chances	PMF: $p_X(k) = \mathbb{P}(X = k)$	PDF $f_X(k)$ gives chances relative to $f_X(k')$
Events	Sum over PMF to get probability	Integrate PDF to get probability
Convert from CDF to P(M/D)F	Sum up PMF to get CDF. Look for "breakpoints" in CDF to get PMF.	Integrate PDF to get CDF. Differentiate CDF to get PDF.
$\mathbb{E}[X]$	$\sum_{\omega} X(\omega) \cdot p_X(\omega)$	$\int_{-\infty}^{\infty} z \cdot f_X(z) \mathrm{d}z$
$\mathbb{E}[g(X)]$	$\sum_{\omega} g(X(\omega)) \cdot p_X(\omega)$	$\int_{-\infty}^{\infty} g(z) \cdot f_X(z) \mathrm{d}z$
Var(X)	$\mathbb{E}[X^2] - (\mathbb{E}[X])^2$	$\mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \int_{-\infty}^{\infty} (z - \mathbb{E}[X])^2 f_X(z) \mathrm{d}z$

