
Continuous Probability CSE 312 Spring 24

Lecture 15



Announcements

We’re in two separate rooms for the midterm---we’ll email out which 
room to go to on Ed this weekend.

Monday’s lecture slots aren’t new lectures.
TAs and I will be here to answer questions and/or discuss a few problems.



Zoo! 

𝒑𝑿 𝒌 =
𝟏

𝒃 − 𝒂 + 𝟏

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝒃 − 𝒂 + 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒑𝑿 𝒌 = 𝟏 − 𝒑 𝒌−𝟏𝒑

𝔼 𝑿 =
𝟏

𝒑

𝐕𝐚𝐫 𝑿 =
𝟏 − 𝒑

𝒑𝟐

𝑿~𝐆𝐞𝐨(𝒑)

𝒑𝑿 𝟎 = 𝟏 − 𝒑;
𝒑𝑿(𝟏) = 𝒑

𝔼 𝑿 = 𝒑

𝐕𝐚𝐫 𝑿 = 𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐞𝐫(𝒑)

𝒑𝑿 𝒌 =
𝒌 − 𝟏

𝒓 − 𝟏
𝒑𝒓 𝟏 − 𝒑 𝒌−𝒓

𝔼 𝑿 =
𝒓

𝒑

𝐕𝐚𝐫 𝑿 =
𝒓(𝟏 − 𝒑)

𝒑𝟐

𝑿~𝐍𝐞𝐠𝐁𝐢𝐧(𝒓, 𝒑)

𝒑𝑿 𝒌 =
𝒏

𝒌
𝒑𝒌 𝟏 − 𝒑 𝒏−𝒌

𝔼 𝑿 = 𝒏𝒑

𝐕𝐚𝐫 𝑿 = 𝒏𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐢𝐧(𝒏, 𝒑)

𝒑𝑿 𝒌 =

𝑲
𝒌

𝑵−𝑲
𝒏−𝒌

𝑵
𝒏

𝔼 𝑿 = 𝒏
𝑲

𝑵

𝐕𝐚𝐫 𝑿 =
𝑲(𝑵 − 𝑲)(𝑵 − 𝒏)

𝑵𝟐(𝑵 − 𝟏)

𝑿~𝐇𝐲𝐩𝐆𝐞𝐨(𝑵,𝑲, 𝒏)

𝒑𝑿 𝒌 =
𝝀𝒌𝒆−𝝀

𝒌!

𝔼 𝑿 = 𝝀

𝐕𝐚𝐫 𝑿 = 𝝀

𝑿~𝐏𝐨𝐢(𝝀)



Zoo Takeaways

We skipped hypergeometric; slides are there, you can use the formulas!
Drawing without replacement from an urn is the situation.

You can do relatively complicated counting/probability calculations 
much more quickly than you could week 1!

You can now explain why your problem is a zoo variable and save 
explanation on homework (and save yourself calculations in the future).

Don’t spend extra effort memorizing…but be careful when looking up 
Wikipedia articles.
The exact definitions of the parameters can differ (is a geometric random variable 
the number of failures before the first success, or the total number of trials 
including the success?)



Where Are We?



What have we done over the past 5 weeks?

Counting
Combinations, permutations, indistinguishable elements, starts and bars, inclusion-
exclusion…

Probability foundations
Events, sample space, axioms of probability, expectation, variance

Conditional probability
Conditioning, independence, Bayes’ Rule

Refined our intuition
Especially around Bayes’ Rule



What’s next?

Continuous random variables.
So far our sample spaces have been countable. What happens if we want to choose 
a random real number?

How do expectation, variance, conditioning, etc. change in this new context?

Mostly analogous to discrete cases, but with integrals instead of sums.

Analysis when it’s inconvenient (or impossible) to exactly calculate 
probabilities.
Central Limit Theorem (approximating discrete distributions with continuous ones)

Tail Bounds/Concentration (arguing it’s unlikely that a random variable is far from its 
expectation)

A first taste of making predictions from data (i.e., a bit of ML)



Today

Continuous Probability
Probability Density Function

Cumulative Distribution Function

Goal for today is to get intuition on what’s different in the continuous 
case. Your goal today is to start building up a gut-feeling of what’s 
happening.

ASK QUESTIONS, (always, but today especially).



Continuous Random Variables



Continuous Random Variables

We’ll need continuous probability spaces and continuous random 
variables to describe experiments that have uncountably-infinite sample 
spaces. 
e.g. all real numbers

How long until the next bus shows up?

What location does a dart land?



Continuous Random Variables

Wait, we’re computer scientists. Computers don’t do real numbers, why 
should we?

Continuous random variables will be a useful model for enormous 
sample spaces. The math will be easier.

Example: polling a large population. The sample space is actually 
discrete. But we’re going to round the result anyway. Make it continuous 
first for easier math, then round.



Why Need New Rules?

We want to choose a uniformly random real number between 0 and 1. 

What’s the probability the number is between 0.4 and 0.5?

For discrete random variables, we’d ask for 
𝐸

Ω

So we get 
∞

∞

The mathematical tools to get consistent answers from expressions like 
those is calculus. 



Let’s start with the pmf

For discrete random variables, we defined the pmf: 𝑝𝑌 𝑘 = ℙ(𝑌 = 𝑘).

We can’t have a pmf quite like we did for discrete random variables. Let 
𝑋 be a random real number between 0 and 1.  

ℙ 𝑋 = .1 =
1

∞
??

Let’s try to maintain as many rules as we can…

Use 𝑓𝑋 instead of 𝑝𝑋
to remember it’s 

different .

Continuous Discrete

𝑝𝑌 𝑘 ≥ 0 𝑓𝑋 𝑘 ≥ 0



𝜔

𝑝𝑌(𝜔) = 1 න
−∞

∞

𝑓𝑋(𝑘) d𝑘



The probability density function

For Continuous random variables, the analogous object is the

“probability density function” we write 𝑓𝑋 𝑘 instead of 𝑝𝑋(𝑘)

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑐 න
𝑎

𝑏

𝑓𝑋 𝑧 d𝑧 = 𝑐 integrating is analogous to sum.



The probability density function

For Continuous random variables, the analogous object is the

“probability density function” we write 𝑓𝑋 𝑘 instead of 𝑝𝑋(𝑘)

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑐 න
𝑎

𝑏

𝑓𝑋 𝑧 d𝑧 = 𝑐 integrating is analogous to sum.

Let’s derive an example PDF together!

For a uniform random real number in [0,1]



The probability density function

For Continuous random variables, the analogous object is the

“probability density function” we write 𝑓𝑋 𝑘 instead of 𝑝𝑋(𝑘)

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 0 ≤ 𝑋 ≤ 1 = 1

ℙ(𝑋 is negative) = 0

ℙ .4 ≤ 𝑋 ≤ .5 = .1

integrating is analogous to sum.



The probability density function

For Continuous random variables, the analogous object is the

“probability density function” we write 𝑓𝑋 𝑘 instead of 𝑝𝑋(𝑘)

Idea: Make it “work right” for events since single outcomes don’t make 
sense.

ℙ 0 ≤ 𝑋 ≤ 1 = 1

ℙ(𝑋 is negative) = 0

ℙ .4 ≤ 𝑋 ≤ .5 = .1

න
0

1

𝑓𝑋 𝑧 d𝑧 = 1 integrating is analogous to sum.

න
−∞

0

𝑓𝑋 𝑧 d𝑧 = 0

න
.4

.5

𝑓𝑋(𝑧) d𝑧 = .1



PDF for uniform

Let 𝑋 be a uniform real number between 0 and 1.

What should 𝑓𝑋(𝑘) be to make all those events integrate to the right 
values?

𝑓𝑋 𝑘 = ቊ
0 if 𝑘 < 0 or 𝑘 > 1
1 if 0 ≤ 𝑘 ≤ 1



Probability Density Function

So ℙ 𝑋 = .1 =? ?

𝑓𝑋 .1 = 1

The number that best represents ℙ(𝑋 = .1) is 0. 

This is different from 𝑓𝑋(𝑥)

So…what is 𝑓𝑋(𝑥)???

For continuous probability spaces:

Impossible events have probability 𝟎, 

but some probability 𝟎 events might be possible.



Using the PDF

Let’s look at a different pdf…

Compare the events: 𝑋 ≈ .2 and 𝑋 ≈ .5

ℙ(.2 − 𝜖/2 ≤ 𝑋 ≤ .2 + 𝜖/2)

What will the pdf give? 2.−𝜖/2
−2+𝜖/2

𝑓𝑋 𝑧 d𝑧

𝑓𝑋 .2 ⋅ 𝜖

What happens if we look at the ratio 

ℙ(𝑋≈.2)

ℙ(𝑋≈.5)

.2 .5



Using the PDF

Let’s look at a different pdf…

Compare the events: 𝑋 ≈ .2 and 𝑋 ≈ .5

ℙ(.2 − 𝜖/2 ≤ 𝑋 ≤ .2 + 𝜖/2)

What will the pdf give? 
.2−𝜖/2

−2+𝜖/2
𝑓𝑋 𝑧 d𝑧

𝑓𝑋 .2 ⋅ 𝜖

What happens if we look at the ratio 

ℙ(𝑋≈.2)

ℙ(𝑋≈.5)
=

ℙ .2−
𝜖

2
≤𝑋≤.2+

𝜖

2

ℙ .5−
𝜖

2
≤𝑋≤.5+

𝜖

2

=
𝜖𝑓𝑋(.2)

𝜖𝑓𝑋(.5)
=

𝑓𝑋 .2

𝑓𝑋(.5)

.2 .5



So what’s the pdf?

It’s the number that when integrated over gives the probability of an 
event. 

Equivalently, it’s number such that:

-integrating over all real numbers gives 1.

-comparing 𝑓𝑋 𝑘 and 𝑓𝑋(ℓ) gives the relative chances of 𝑋 being near 
𝑘 or ℓ. 



CDFs



What’s a CDF?

𝐹𝑋 𝑘 = ℙ 𝑋 ≤ 𝑘 = ∞−
𝑘

𝑓𝑋 𝑧 d𝑧

So how do I get from CDF to PDF? Taking the derivative!

d

d𝑘
𝐹𝑋(𝑘) =

d

𝑑𝑘
∞−
𝑘

𝑓𝑋 𝑧 d𝑧 = 𝑓𝑋(𝑘)

The Cumulative Distribution Function 𝐹𝑋 𝑘 = ℙ(𝑿 ≤ 𝒌)
analogous to the CDF for discrete variables.



Comparing Discrete and Continuous

Discrete Random Variables Continuous Random Variables

Probability 𝟎 Equivalent to impossible All impossible events have probability 0, but not 

conversely.

Relative Chances PMF: 𝑝𝑋 𝑘 = ℙ(𝑋 = 𝑘) PDF 𝑓𝑋(𝑘) gives chances relative to 𝑓𝑋(𝑘
′)

Events Sum over PMF to get probability Integrate PDF to get probability

Convert from CDF to 

PMF

Sum up PMF to get CDF.

Look for “breakpoints” in CDF to get PMF. 

Integrate PDF to get CDF.

Differentiate CDF to get PDF.

𝔼[𝑿]


𝜔

𝑋(𝜔) ⋅ 𝑓𝑋(𝜔) න
−∞

∞

𝑧 ⋅ 𝑓𝑋 𝑧 d𝑧

𝔼[𝒈 𝑿 ]


𝜔

𝑔 𝑋 𝜔 ⋅ 𝑓𝑋(𝜔) න
−∞

∞

𝑔(𝑧) ⋅ 𝑓𝑋 𝑧 d𝑧

𝐕𝐚𝐫(𝑿) 𝔼 𝑋2 − 𝔼 𝑋 2

𝔼 𝑋2 − 𝔼 𝑋 2 = න
−∞

∞

𝑧 − 𝔼 𝑋 2𝑓𝑋 𝑧 d𝑧



What about expectation?

For a random variable 𝑋, we define:

𝔼 𝑋 = ∞−
∞

𝑋(𝑧) ⋅ 𝑓𝑋 𝑧 d𝑧

Just replace summing over the pmf with integrating the pdf.

It still represents the average value of 𝑋.



Expectation of a function

Again, analogous to the discrete case; just replace summation with 
integration and pmf with the pdf.

We’re going to treat this as a definition.

Technically, this is really a theorem; since 𝑓() is the pdf of 𝑋 and it only 
gives relative likelihoods for 𝑋, we need a proof to guarantee it “works” 
for 𝑔(𝑋). 

Sometimes called “Law of the Unconscious Statistician.”

For any function 𝒈 and any continuous random variable, 𝑿:

𝔼 𝒈 𝑿 = ∞−
∞

𝒈 𝑿(𝒛) ⋅ 𝒇𝑿 𝒛 𝐝𝒛



Linearity of Expectation

Still true!

Won’t show you the proof – for just 𝔼[𝑎𝑋 + 𝑏], it’s
𝔼 𝑎𝑋 + 𝑏 = ∞−

∞
𝑎𝑋 𝑘 + 𝑏 𝑓𝑋(𝑘) d𝑘

= ∞−
∞

𝑎𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + ∞−
∞

𝑏𝑓𝑋 𝑘 𝑑𝑘

= 𝑎 ∞−
∞

𝑋 𝑘 𝑓𝑋 𝑘 𝑑𝑘 + 𝑏 ∞−
∞

𝑓𝑋 𝑘 𝑑𝑘

= 𝑎𝔼 𝑋 + 𝑏

𝔼 𝒂𝑿 + 𝒃𝒀 + 𝒄 = 𝒂𝔼 𝑿 + 𝒃𝔼[𝒀] + 𝒄
For all 𝑿, 𝒀; even if they’re continuous.



Variance

No surprises here

𝐕𝐚𝐫 𝑿 = 𝔼 𝑿𝟐 − 𝔼 𝑿 𝟐 = න
−∞

∞

𝒇𝑿(𝒌) 𝑿 𝒌 − 𝔼 𝑿 𝟐 𝐝𝒌



Let’s calculate an expectation

Let 𝑋 be a uniform random number between 𝑎 and 𝑏.

𝔼 𝑋 = ∞−
∞

𝑧 ⋅ 𝑓𝑋 𝑧 d𝑧

= ∞−
𝑎

𝑧 ⋅ 0 d𝑧 + 𝑎
𝑏
𝑧 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏

∞
𝑧 ⋅ 0 d𝑧

= 0 + 𝑎
𝑏 𝑧

𝑏−𝑎
d𝑧 + 0

= ฬ
𝑧2

2(𝑏−𝑎)

𝑏

𝑧=𝑎
=

𝑏2

2(𝑏−𝑎)
−

𝑎2

2 𝑏−𝑎
=

𝑏2−𝑎2

2 𝑏−𝑎
=

𝑏+𝑎 𝑏−𝑎

2 𝑏−𝑎
=

𝑎+𝑏

2



What about 𝔼 𝑔 𝑋

Let 𝑋~Unif(𝑎, 𝑏), what about 𝔼 𝑋2 ?

𝔼 𝑋2 = ∞−
∞

𝑧2𝑓𝑋 𝑧 d𝑧

= ∞−
𝑎

𝑧2 ⋅ 0 d𝑧 + 𝑎
𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 𝑏

∞
𝑧2 ⋅ 0 d𝑧

= 0 + 𝑎
𝑏
𝑧2 ⋅

1

𝑏−𝑎
d𝑧 + 0

=
1

𝑏−𝑎
⋅ ฬ
𝑧3

3

𝑏

𝑧=𝑎
=

1

𝑏−𝑎

𝑏3

3
−

𝑎3

3
=

1

3 𝑏−𝑎
⋅ 𝑏 − 𝑎 𝑎2 + 𝑎𝑏 + 𝑏2

=
𝑎2+𝑎𝑏+𝑏2

3



Let’s assemble the variance

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

=
𝑎2+𝑎𝑏+𝑏2

3
−

𝑎+𝑏

2

2

=
4(𝑎2+𝑎𝑏+𝑏2)

12
−

3(𝑎2+2𝑎𝑏+𝑏2)

12

=
𝑎2−2𝑎𝑏+𝑏2

12

=
𝑎−𝑏 2

12



Continuous Uniform Distribution

𝑋~Unif(𝑎, 𝑏) (uniform real number between 𝑎 and 𝑏)

PDF: 𝑓𝑋 𝑘 = ൝
1

𝑏−𝑎
if 𝑎 ≤ 𝑘 ≤ 𝑏

0 otherwise

CDF: 𝐹𝑋 𝑘 = ൞

0 if 𝑘 < 𝑎
𝑘−𝑎

𝑏−𝑎
if 𝑎 ≤ 𝑘 ≤ 𝑏

1 if 𝑘 ≥ 𝑏

𝔼 𝑋 =
𝑎+𝑏

2

Var 𝑋 =
𝑏−𝑎 2

12


