Where are we?

A random variable is a numerical summary of the outcome of an experiment.

 $\mathbb{E}[X]$ is the weighted average of possibilities of X.

For <u>all</u> $\operatorname{rv's} \mathbb{E}[X + Y] = \mathbb{E}[X] = \mathbb{E}[Y]$.

Indicator rv's are a great trick to simplify expectation computations.

 $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$ measures how "spread out" a rv is.

For **independent** rv's:

Var(X + Y) = Var(X) + Var(Y)

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

Make a prediction

How should Var(X + c) relate to Var(X) if c is a constant? How should Var(aX) relate to Var(X) is a is a constant?

Zoo! 🖛 🔮 🔊 👌 🖝 👄 🐢 🥐 🥐 🦬					
$X \sim \text{Unif}(a, b)$	X~Ber(p)		$X \sim \operatorname{Bin}(n, p)$		X~Geo(p)
$p_X(k) = \frac{1}{b-a+1}$ $\mathbb{E}[X] = \frac{a+b}{2}$ $Var(X) = \frac{(b-a)(b-a+2)}{12}$	$p_X(0) = 1 - p;$ $p_X(1) = p$ $\mathbb{E}[X] = p$ Var(X) = p(1 - p)		$p_X(k) = {n \choose k} p^k (1-p)^{n-k}$ $\mathbb{E}[X] = np$ $Var(X) = np(1-p)$		$p_X(k) = (1-p)^{k-1}p$ $\mathbb{E}[X] = \frac{1}{p}$ $Var(X) = \frac{1-p}{p^2}$
$X \sim \text{NegBin}(r, p)$ $p_X(k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}$ $\mathbb{E}[X] = \frac{r}{p}$ $\text{Var}(X) = \frac{r(1-p)}{p^2}$		$X \sim \text{HypGeo}(N, K, n)$ $p_X(k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ $\mathbb{E}[X] = n\frac{K}{N}$ $\text{Var}(X) = \frac{K(N-K)(N-n)}{N^2(N-1)}$		$X \sim \operatorname{Poi}(\lambda)$ $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $\mathbb{E}[X] = \lambda$ $\operatorname{Var}(X) = \lambda$	

Formally...

Let X be the number of flips needed, Y be the flips after the third. $\mathbb{P}(Y = k | X \ge 3) =?$

•••

Which is $p_X(k)$.