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Expectation

Intuition: The weighted average of values 𝑋 could take on.

Weighted by the probability you actually see them.

The “expectation” (or “expected value”) of a random variable 𝑋 is:

𝔼 𝑿 = 

𝒌∈Ω𝑋

𝒌 ⋅ ℙ(𝑿 = 𝒌)

𝔼 𝑿 = 

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)

Expectation
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Linearity of Expectation

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation
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Linearity of Expectation

Extending this to n random variables, 𝑋1, 𝑋2, … , 𝑋𝑛

𝔼 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 = 𝔼 𝑋1 + 𝔼 𝑋2 + ⋯ + 𝔼 𝑋𝑛

This can be proven by induction.

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation
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Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = 

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)
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Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔
 = Σ𝜔∈Ω(ℙ 𝜔 𝑋 𝜔 + ℙ 𝜔 𝑌 𝜔)

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = 

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)
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Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔
 = Σ𝜔∈Ω(ℙ 𝜔 𝑋 𝜔 + ℙ 𝜔 𝑌 𝜔)

= Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + Σ𝜔∈Ωℙ 𝜔 𝑌 𝜔

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = 

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)

Mobile User



Linearity of Expectation - Proof

Proof:
𝔼 𝑋 + 𝑌 = Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + 𝑌 𝜔
 = Σ𝜔∈Ω(ℙ 𝜔 𝑋 𝜔 + ℙ 𝜔 𝑌 𝜔)

= Σ𝜔∈Ωℙ 𝜔 𝑋 𝜔 + Σ𝜔∈Ωℙ 𝜔 𝑌 𝜔
 = 𝔼 𝑋] + 𝔼[𝑌

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation

Definition of expectation:

𝔼 𝑿 = 

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)
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Linearity of Expectation

Constants are also fine:

For real numbers 𝑎, 𝑏, 𝑐
𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝔼 𝑎𝑋 + 𝔼 𝑏𝑌 + 𝑐
 = 𝑎𝔼 𝑋 + 𝑏𝔼 𝑌 + 𝑐

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation
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Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?
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Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?

Let 𝑍 be the r.v. representing the total number of fish you both catch
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Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?

Let 𝑍 be the r.v. representing the total number of fish you both catch
𝔼 𝑍 = 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌 = 3 + 7 = 10
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Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?

Let 𝑍 be the r.v. representing the total number of fish you both catch
𝔼 𝑍 = 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌 = 3 + 7 = 10

• You can sell each for $10 per fish, but you need $15 (total) for expenses. 
What is your average profit?
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Fishy Business

Say you and your friend go fishing everyday.

• You catch 𝑋 fish, with 𝔼 𝑋 = 3

• Your friend catches 𝑌 fish, with 𝔼 𝑌 = 7

• How many fish do both of you bring on an average day?

Let 𝑍 be the r.v. representing the total number of fish you both catch
𝔼 𝑍 = 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌 = 3 + 7 = 10

• You can sell each for $10 per fish, but you need $15 (total) for expenses. 
What is your average profit?

𝔼 10𝑍 − 15 = 10𝔼 𝑍 − 15 = 100 − 15 = 85
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Coin Tosses

If we flip a coin twice, what is the expected number of heads that come 
up?



Coin Tosses

If we flip a coin twice, what is the expected number of heads that come 
up?

Let 𝑌 be the r.v. representing the total number of heads

𝑝𝑌 𝑦 =

1

4
 if 𝑦 = 0

1

2
 if 𝑦 = 1

1

4
 if 𝑦 = 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Coin Tosses

If we flip a coin twice, what is the expected number of heads that come 
up?

Let 𝑌 be the r.v. representing the total number of heads

𝑝𝑌 𝑦 =

1

4
 if 𝑦 = 0

1

2
 if 𝑦 = 1

1

4
 if 𝑦 = 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝔼 𝑌 = Σ𝑘∈Ω𝑌
𝑝𝑌 𝑘 ⋅ 𝑘 =

1

4
⋅ 0 +

1

2
⋅ 1 +

1

4
⋅ 2 = 1
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Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the r.v. representing the total number of heads.
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Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the r.v. representing the total number of heads.

Make a prediction --- what should 𝔼[𝑋] be?

a) 𝑛 + 𝑝
   b) 𝑝𝑛

   c) 𝑛𝑝
   d) 𝑛/𝑝
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Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the r.v. representing the total number of heads.

𝔼 𝑋 = σ𝑘=0
𝑛 𝑘 ⋅ ℙ(𝑋 = 𝑘) =  σ𝑘=0

𝑛 𝑘 ⋅ 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

Ok, but what actually is it?

I don’t have intuition for this 

formula.
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Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

𝔼 𝑋 = σ𝑘=0
𝑛 𝑘 ⋅ ℙ(𝑌 = 𝑘) = σ𝑘=0

𝑛 𝑘 ⋅ 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

= σ𝑘=1
𝑛 𝑘 ⋅ 𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= σ𝑘=1
𝑛 𝑛 ⋅ 𝑛−1

𝑘−1
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= 𝑛𝑝 σ𝑖=0
𝑛−1 𝑛−1

𝑖
𝑝𝑖(1 − 𝑝)𝑛−1−𝑖

= 𝑛𝑝(𝑝 + (1 − 𝑝))𝑛−1= 𝑛𝑝

𝑘
𝑛

𝑘
= 𝑛

𝑛 − 1

𝑘 − 1

Binomial Theorem!

We did it! And all it took was a clever application of the binomial theorem, 

setup by a very non-obvious application of an obscure combinatorial identity. Ezpz.
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Repeated Coin Tosses

Now what if the probability of flipping a head was 𝑝 and that we wanted 
to find the total number of heads flipped when we flip the coin 𝑛 times?

𝔼 𝑋 = σ𝑘=0
𝑛 𝑘 ⋅ ℙ(𝑌 = 𝑘) = σ𝑘=0

𝑛 𝑘 ⋅ 𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

= σ𝑘=1
𝑛 𝑘 ⋅ 𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= σ𝑘=1
𝑛 𝑛 ⋅ 𝑛−1

𝑘−1
𝑝𝑘(1 − 𝑝)𝑛−𝑘

= 𝑛𝑝 σ𝑖=0
𝑛−1 𝑛−1

𝑖
𝑝𝑖(1 − 𝑝)𝑛−1−𝑖

= 𝑛𝑝(𝑝 + (1 − 𝑝))𝑛−1= 𝑛𝑝

𝑘
𝑛

𝑘
= 𝑛

𝑛 − 1

𝑘 − 1

Binomial Theorem!

We did it! And all it took was a clever application of the binomial theorem, 

setup by a very non-obvious application of an obscure combinatorial identity. Ezpz.



Linearity of Expectation

Extending this to n random variables, 𝑋1, 𝑋2, … , 𝑋𝑛

𝔼 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 = 𝔼 𝑋1 + 𝔼 𝑋2 + ⋯ + 𝔼 𝑋𝑛

This can be proven by induction.

For any two random variables 𝑋 and 𝑌:

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Note: 𝑋 and 𝑌 do not have to be independent

Linearity of Expectation
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Indicator Random Variables

For any event 𝐴, we can define the indicator random variable 𝟏[𝐴] for 𝐴

𝟏 𝐴 = 𝑋 = ቊ
 1 if event A occurs
 0 otherwise

You’ll also see notation like:

    

ℙ 𝑋 = 1 = ℙ 𝐴
ℙ 𝑋 = 0 = 1 − ℙ(𝐴)

𝑝𝑋 𝑥 = ቐ
ℙ 𝐴  if 𝑥 = 1
1 − ℙ 𝐴  if 𝑥 = 0
0 otherwise

𝔼 𝑋
= 1 ⋅ 𝑝𝑋 1 + 0 ⋅ 𝑝𝑋(0)
= 𝑝𝑋 1 = ℙ(𝐴)
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Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

What indicators can we define? What ‘Booleans’ have enough 
information to combine (add) and solve the problem?
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Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise
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Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖
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Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

    

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝
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Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

         𝔼 𝑋𝑖 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝
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Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

          𝔼 𝑋𝑖 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 

𝑖=1

𝑛

𝑋𝑖 = 

𝑖=1

𝑛

𝔼[𝑋𝑖]

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝
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Repeated Coin Tosses (Again)
The probability of flipping a head is 𝑝 and we want to find the total 
number of heads flipped when we flip the coin 𝑛 times?

Let 𝑋 be the total number of heads

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if the ith coin flip is heads
 0 otherwise

                 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

          𝔼 𝑋𝑖 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 

𝑖=1

𝑛

𝑋𝑖 = 

𝑖=1

𝑛

𝔼 𝑋𝑖 = 

𝑖=1

𝑛

𝑝 = 𝑛𝑝

ℙ 𝑋𝑖 = 1 = 𝑝
ℙ 𝑋𝑖 = 0 = 1 − 𝑝
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Computing complicated expectations

We often use these three steps to solve complicated expectations

1. Decompose: Finding the right way to decompose the random 
variable into sum of simple random variables

𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

2. LOE: Apply Linearity of Expectation
𝔼 𝑋 = 𝔼 𝑋1 + 𝔼 𝑋2 + ⋯ + 𝔼[𝑋𝑛]

3. Conquer: Compute the expectation of each 𝑋𝑖

Often 𝑋𝑖 are indicator random variables
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Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the 
same birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

LOE:

Conquer:

Mobile User



Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the 
same birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

Define 𝑋𝑖𝑗  as follows:

𝑋𝑖𝑗 = ቊ
 1 if person i, j have the same bithday
 0 otherwise

          𝑋 = Σ𝑖,𝑗𝑋𝑖𝑗

LOE:

Conquer:
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Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the 
same birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

Define 𝑋𝑖𝑗  as follows:

𝑋𝑖𝑗 = ቊ
 1 if person i, j have the same bithday
 0 otherwise

          𝑋 = Σ𝑖,𝑗𝑋𝑖𝑗

LOE:

𝔼 𝑋 = 𝔼 Σ𝑖,𝑗𝑋𝑖𝑗 = Σ𝑖,𝑗𝔼 𝑋𝑖𝑗

Conquer:
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Pairs with the same birthday

In a class of 𝑚 students, on average how many pairs of people have the same 
birthday?

Decompose: Let 𝑋 be the number of pairs with the same birthday

Define 𝑋𝑖𝑗  as follows:

𝑋𝑖𝑗 = ቊ
 1 if person i, j have the same bithday
 0 otherwise

          𝑋 = Σ𝑖,𝑗𝑋𝑖𝑗

LOE:

𝔼 𝑋 = 𝔼 Σ𝑖,𝑗𝑋𝑖𝑗 = Σ𝑖,𝑗𝔼 𝑋𝑖𝑗

Conquer:

𝔼 𝑋𝑖𝑗 = ℙ 𝑋𝑖𝑗 = 1 =
365

365 ⋅ 365
=

1

365

𝔼 𝑋 =
𝑚

2
⋅ 𝔼 𝑋𝑖𝑗 =

𝑚

2
⋅

1

365
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Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each 
place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 
(equally likely)

Let 𝑋 be the number of people that end up in front of their own name 
tag. Find 𝔼 𝑋 .

Decompose: 

What 𝑋𝑖 can we define that have the needed information?

LOE:

Conquer:

Mobile User



Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in 
front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 (equally likely)

𝑋 is the number of people that end up in front of their own name tag. Find 𝔼 𝑋 .

Decompose: Define 𝑋𝑖 as follows:

𝑋𝑖 = ቊ
 1 if person i sits infront of their own name tag
 0 otherwise

          

Note: 𝑋 = Σ𝑖=1
𝑛 𝑋𝑖

LOE:
𝔼 𝑋 = 𝔼[𝛴𝑖=1

𝑛 𝑋𝑖] = Σ𝑖=1
𝑛 𝔼 𝑋𝑖

Conquer:
These 𝑋𝑖 are not independent!

That’s ok!!
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Rotating the table

𝑛 people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in 
front of their own name tag.

Rotate the table by a random number 𝑘 of positions between 1 and n-1 (equally likely)

𝑋 is the number of people that end up in front of their own name tag. Find 𝔼 𝑋 .

Decompose: Define 𝑋𝑖  as follows:

𝑋𝑖 = ቊ
 1 if person i sits infront of their own name tag
 0 otherwise

          𝑋 = Σ𝑖=1
𝑛 𝑋𝑖

LOE:
𝔼 𝑋 = 𝔼[𝛴𝑖=1

𝑛 𝑋𝑖] = Σ𝑖=1
𝑛 𝔼 𝑋𝑖

Conquer:

𝔼 𝑋𝑖 = 𝑃 𝑋𝑖 = 1 =
1

𝑛 − 1
 𝔼 𝑋 = 𝑛 ⋅ 𝔼 𝑋𝑖 =

𝑛

𝑛 − 1
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Extra Practice



Frogger

A frog starts on a 1-dimensional number line at 0. 

Each second, independently, the frog takes a unit step right with 
probability 𝑝1, to the left with probability 𝑝2, and doesn't move with 
probability 𝑝3, where 𝑝1 + 𝑝2 + 𝑝3 = 1. 

After 2 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .



Frogger – Brute Force 

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a 
unit step right with probability 𝑝𝑅, to the left with probability 𝑝𝐿, and doesn't move with probability 
𝑝𝑆, where 𝑝𝐿 + 𝑝𝑅 + 𝑝𝑆 = 1. After 2 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .

We could find the PMF by computing the probability for each value in the range of X, and then 
applying definition of expectation:

𝑝𝑋 𝑥 =

𝑝𝐿
2 𝑥 = −2

2𝑝𝐿𝑝𝑆 𝑥 = −1

2𝑝𝐿𝑝𝑅 + 𝑝𝑠
2 𝑥 =  0

2𝑝𝑅𝑝𝑆 𝑥 =  1

𝑝𝑅
2  𝑥 =  2

0 otherwise

𝔼 𝑿 = Σ𝜔𝑃 𝜔 𝑋 𝜔 = (−2)𝑝𝐿
2+ −1 2𝑝𝐿𝑝𝑆 + 0 ⋅ 2𝑝𝐿𝑝𝑅 + 𝑝𝑠

2 + 1 2𝑝𝑅𝑝𝑆 + (2)𝑝𝑅
2 = 2(𝑝𝑅 − 𝑝𝐿)

We think about the outcomes that correspond to each 

value of X and compute the probability of that. For 

example, X=0 happens when the frog doesn’t move – 

this means it either moved left and then right, or right 

and then left, or did not move both seconds.



Frogger – LOE

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a 
unit step right with probability 𝑝𝑅, to the left with probability 𝑝𝐿, and doesn't move with probability 
𝑝𝑆, where 𝑝𝐿 + 𝑝𝑅 + 𝑝𝑆 = 1. After 2 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቐ

 −1 if the frog moved left on the 𝑖th step
 0 otherwise
 1 if the frog moved right on the 𝑖th step

   

𝔼 𝑋𝑖 = −1 ⋅ 𝑝𝐿 + 1 ⋅ 𝑝𝑅 + 0 ⋅ 𝑝𝑆 = (𝑝𝑅 − 𝑝𝐿)

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 σ𝑖=1
2 𝑋𝑖 = σ𝑖=1

2 𝔼[𝑋𝑖] = 2(𝑝𝑅 − 𝑝𝐿)

Or we can apply LoE!



Frogger – LOE

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a 
unit step right with probability 𝑝𝑅, to the left with probability 𝑝𝐿, and doesn't move with probability 
𝑝𝑆, where 𝑝𝐿 + 𝑝𝑅 + 𝑝𝑆 = 1. After 60 seconds, let 𝑋 be the location of the frog. Find 𝔼 𝑋 .

Define 𝑋𝑖  as follows:

𝑋𝑖 = ቐ

 −1 if the frog moved left on the 𝑖th step
 0 otherwise
 1 if the frog moved right on the 𝑖th step

   

𝔼 𝑋𝑖 = −1 ⋅ 𝑝𝐿 + 1 ⋅ 𝑝𝑅 + 0 ⋅ 𝑝𝑆 = (𝑝𝑅 − 𝑝𝐿)

By Linearity of Expectation, 

𝔼 𝑋 = 𝔼 σ𝑖=1
𝟔𝟎 𝑋𝑖 = σ𝑖=1

𝟔𝟎 𝔼[𝑋𝑖] =𝟔𝟎(𝑝𝑅 − 𝑝𝐿)

If we interested in a whole minute (60 sec), the first approach would be awful because we would need 

to compute many probabilities or deal with a gnarly summation! Instead, we can use LoE!
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