Independence

Independence

Two events A, B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

You'll sometimes see this called "statistical independence" to emphasize that we're talking about probabilities (not, say, physical interactions).

If A, B both have non-zero probability then $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$

Mutual Exclusion and independence

Two of these statements are true, one is false. Explain to each other which ones are true, and find a counter-example to the false one.

1. If *A*, *B* both have nonzero probability and they are mutually exclusive, then they cannot be independent.

2. If *A* has zero probability, then *A*, *B* are independent (for any *B*).

3. If two events are independent, then at least one has nonzero probability.

Fill out the poll everywhere so Robbie knows how long to explain Go to pollev.com/robbie

Chain Rule

We defined conditional probability as: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Which means $\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$

Chain Rule

 $\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_n | A_1 \cap \dots \cap A_{n-1}) \cdot \mathbb{P}(A_{n-1} | A_1 \cap \dots \cap A_{n-2}) \cdots \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_1)$

Conditional Independence Example

You have two coins. Coin *A* is fair, coin *B* comes up heads with probability **0.85**.

You will roll a (fair) die, if the result is odd flip coin *A* twice (independently); if the result is even flip coin *B* twice (independently)

Let C_1 be the event "the first flip is heads", C_2 be the event "the second flip is heads", O be the event "the die was odd"

Are C_1 and C_2 independent? Are they independent conditioned on O?