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Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Willy Wonka

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

You pick up a bar and it alerts, what is the probability you have a golden 
ticket?

Which of these is closest to the right answer?
A. 0.1%

B. 10%

C. 50%

D. 90%

E. 99%

F. 99.9%

Fill out the poll everywhere so 

Robbie knows how long to explain

Go to pollev.com/cse312



Conditioning

Let 𝑆 be the event that the Scale alerts you

Let 𝐺 be the event your bar has a Golden ticket. 

What conditional probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have 
a golden ticket?



Conditioning

Let 𝑆 be the event that the Scale alerts you

Let 𝐺 be the event your bar has a Golden ticket. 

What conditional probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

You pick up a bar and it alerts, what is the probability you have a 
golden ticket?

ℙ(𝐺)

ℙ(𝑆|𝐺)

ℙ 𝑆 ҧ𝐺

ℙ(𝐺|𝑆)



Reversing the Conditioning

All of our information conditions on whether 𝐺 happens or not – does 
your bar have a golden ticket or not?

But we’re interested in the “reverse” conditioning. We know the scale 
alerted us – we know the test is positive – but do we have a golden 
ticket?



Bayes Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵



Bayes Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

What do we know about Wonka Bars?

ℙ(𝐺|𝑆) =
ℙ 𝑆 𝐺 ⋅ ℙ(𝐺)

ℙ(𝑆)



Bayes Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

What do we know about Wonka Bars?

ℙ(𝐺|𝑆) =
.999 ⋅ .001

ℙ(𝑆)



Filling In

What’s ℙ(𝑆)?

We’ll use a trick called “the law of total probability”:

ℙ 𝑆 = ℙ 𝑆 𝐺 ⋅ ℙ 𝐺 + ℙ 𝑆 ҧ𝐺 ⋅ ℙ ҧ𝐺

= 0.999 ⋅ .001 + .01 ⋅ .999

= .010989



Law of Total Probability

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

A partition of a set 𝑆 is a family of subsets 𝑆1, 𝑆2, … , 𝑆𝑘 such that:

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖, 𝑗 and

𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑘 = 𝑆. 

i.e. every element of Ω is in exactly one of the 𝐴𝑖 .



Law of Total Probability

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

For any event 𝑬, 

ℙ 𝑬 = 

𝐚𝐥𝐥 𝒊

ℙ 𝑬|𝑨𝒊 ℙ(𝑨𝒊)

Law of Total Probability



Why?

The Proof is actually pretty informative on what’s going on. 

σall 𝑖ℙ 𝐸|𝐴𝑖 ℙ(𝐴𝑖)

= σall 𝑖
ℙ 𝐸∩𝐴𝑖

ℙ 𝐴𝑖
⋅ ℙ(𝐴𝑖) (definition of conditional probability)

= σall 𝑖ℙ 𝐸 ∩ 𝐴𝑖

= ℙ(𝐸)

The 𝐴𝑖 partition Ω, so 𝐸 ∩ 𝐴𝑖 partition 𝐸. Then we just add up those 
probabilities. 
Ability to add follows from the “countable additivity” axiom.

𝐴1 𝐴2 𝐴3

𝐸



Bayes Rule

What do we know about Wonka Bars?

ℙ(𝐺|𝑆) =
.999 ⋅ .001

.010989

Solving ℙ 𝐺 𝑆 =
1

11
, i.e. about 0.0909.

Only about a 10% chance that the bar has the golden ticket!



Wait a minute…

That doesn’t fit with many of our guesses. What’s going on?

Instead of saying “we tested one and got a positive” imagine we tested 
1000. ABOUT how many bars of each type are there?

(about) 1 with a golden ticket 999 without. Lets say those are exactly 
right.

Lets just say that one golden is truly found

(about) 1% of the 999 without would be a positive. Lets say it’s exactly 
10.

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 

you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 

(falsely) alert you only 1% of the time. 



Visually

Gold bar is the one (true) golden ticket bar.

Purple bars don’t have a ticket and tested 

negative.

Red bars don’t have a ticket, but tested 

positive.

The test is, in a sense, doing really well. 

It’s almost always right.

The problem is it’s also the case that the 

correct answer is almost always “no.”



Updating Your Intuition

Take 1: The test is actually good and has VASTLY increased our belief 
that there IS a golden ticket when you get a positive result.

If we told you “your job is to find a Wonka Bar with a golden ticket” 
without the test, you have 1/1000 chance, with the test, you have (about) 
a 1/11 chance. That’s (almost) 100 times better!

This is actually a huge improvement! 



Updating Your Intuition

Take 2: Humans are really bad at intuitively understanding very large 
or very small numbers.

When I hear “99% chance”, “99.9% chance”, “99.99% chance” they all go 
into my brain as “well that’s basically guaranteed” And then I forget how 
many 9’s there actually were.

But the number of 9s matters because they end up “cancelling” with the 
“number of 9’s” in the population that’s truly negative. We’ll talk about 
this a little more on Friday in the applications.



Updating Your Intuition

Take 3: View tests as updating your beliefs, not as revealing the truth.

Bayes’ Rule says that ℙ(𝐵|𝐴) has a factor of ℙ(𝐵) in it. You have to 
translate “The test says there’s a golden ticket” to “the test says you 
should increase your estimate of the chances that you have a golden 
ticket.”

A test takes you from your “prior” beliefs of the probability to your 
“posterior” beliefs.



More Bayes Practice



A contrived example

You have three red marbles and one blue marble in your left pocket, 
and one red marble and two blue marbles in your right pocket.

You will flip a fair coin; if it’s heads, you’ll draw a marble (uniformly) from 
your left pocket, if it’s tails, you’ll draw a marble (uniformly) from your 
right pocket.

Let 𝐵 be you draw a blue marble. Let 𝑇 be the coin is tails.

What is ℙ(𝐵|𝑇) what is ℙ(𝑇|𝐵) ?



Updated Sequential Processes

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Updated Sequential Processes

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

ℙ 𝐵 𝑇 = 2/3; ℙ 𝐵 =
1

8
+

1

3
=

11

24

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

The right (tails) pocket is far more likely to produce a blue marble if picked 

than the left (heads) pocket is. Seems like ℙ(𝑇|𝐵) should be greater than ½.



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Bayes’ Rule says:

ℙ 𝑇 𝐵 =
ℙ(𝐵|𝑇)ℙ 𝑇

ℙ 𝐵

=
2

3
⋅
1

2

11/24
= 8/11

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.



The Technical Stuff



Proof of Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
by definition of conditional probability

Now, imagining we get 𝐴 ∩ 𝐵 by conditioning on 𝐴, we should get a 
numerator of ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

=
ℙ(𝐵|𝐴)⋅ℙ 𝐴

ℙ 𝐵

As required. 



A Technical Note

After you condition on an event, what remains is a probability space.

With 𝐵 playing the role of the sample space, 

ℙ(𝜔|𝐵) playing the role of the probability measure.

All the axioms are satisfied (it’s a good exercise to check)

That means any theorem we write down has a version where you 
condition everything on 𝐵. 



An Example

Bayes Theorem still works in a probability space where we’ve already 
conditioned on 𝑆.

ℙ 𝐴 [𝐵 ∩ 𝑆] =
ℙ 𝐵 [𝐴 ∩ 𝑆] ⋅ℙ 𝐴 𝑆

ℙ(𝐵|𝑆)



A Quick Technical Remark

I often see students write things like 

ℙ([𝐴 𝐵] 𝐶)

This is not a thing. 

You probably want ℙ(𝐴| 𝐵 ∩ 𝐶 )

𝐴|𝐵 isn’t an event – it’s describing an event and telling you to restrict 
the sample space. So you can’t ask for the probability of that 
conditioned on something else.



Real-World Bayes Example



Application 1: Medical Tests

Helping Doctors and Patients Make Sense of Health Statistics

A researcher posed the following scenario to a group of 160 doctors:

Assume you conduct a disease screening using a standard test in a certain region. 
You know the following information about the people in this region:  

The probability that a person has the disease is 1% (prevalence) 

If a person has the disease, the probability that she tests positive is 90% (sensitivity) 

If a person does not have the disease, the probability that she nevertheless tests 
positive is 9% (false-positive rate) 

A person tests positive. She wants to know from you whether that means that she has 
the disease for sure, or what the chances are. What is the best answer? 

C. Out of 10 people with a positive test, about 1 

have the disease. 

D. The probability that she has the disease is about 

1%

A. The probability that she has the disease is 

about 81%. 

B. Out of 10 people with a positive test, about 9 

have the disease. 

https://journals.sagepub.com/doi/pdf/10.1111/j.1539-6053.2008.00033.x


Let’s do the calculation!

Let 𝐷 be “the patient has the disease”, 𝑇 be the test was positive.

ℙ 𝐷 𝑇 = ℙ 𝑇 𝐷 ⋅ ℙ 𝐷 /ℙ(𝑇)

=
.9⋅.01

.99⋅.09+ .01⋅.9
≈ 0.092

Calculation tip: for Bayes’ Rule, you should see one of the terms on the 
bottom exactly match your numerator (if you’re using the LTP to 
calculate the probability on the bottom)



Pause for vocabulary

Physicians have words for just about everything

Let 𝐷 be has the disease; 𝑇 be test is positive

ℙ(𝐷) is “prevalence”

ℙ(𝑇|𝐷) is “sensitivity”
A ‘sensitive’ test is one which picks up on the disease when it’s there 
(high sensitivity -> few false negatives)

ℙ 𝑇 𝐷 is “specificity”

A ‘specific’ test is one that is positive specifically because of the disease, and for no 
other reason (high specificity -> few false positives)



How did the doctors do

C (about 1 in 10) was the correct answer.

Of the doctors surveyed, less than ¼ got it right (so worse than random 
guessing).

After the researcher taught them his calculation trick, more than 80% 
got it right.



One Weird Trick!

Calculation Trick: imagine you 
have a large population (not one 
person) and ask how many there 
are of false/true 
positives/negatives.



What about the real world?

When you’re older and have to do more routine medical tests, don’t get 
concerned (yet) when they ask to run another test.*

It’s usually fine.* 

*This is not medical advice, Robbie is not a physician. 



Independence



Definition of Independence

We’ve calculated conditional probabilities.

Sometimes conditioning – getting some partial information about the 
outcome – doesn’t actually change the probability.

We already saw an example like this… 



Conditioning Practice

Red die 6
conditioned on 
sum 7 1/6

Red die 6 
conditioned on 
sum 9 1/4

Sum 7 conditioned 
on red die 6 1/6

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Red die 6 has probability 

1/6 before or after 

conditioning on sum 7.



Independence

You’ll sometimes see this called “statistical independence” to emphasize 
that we’re talking about probabilities (not, say, physical interactions).

If 𝐴, 𝐵 both have non-zero probability then

ℙ 𝐴 ∩ 𝐵 = ℙ(𝐴)ℙ(𝐵) ⇔ ℙ 𝐴 𝐵 = ℙ(𝐴) ⇔ ℙ 𝐵 𝐴 = ℙ(𝐵)

Two events 𝐴, 𝐵 are independent if 

ℙ 𝐴 ∩ 𝐵 = ℙ 𝐴 ⋅ ℙ(𝐵)

Independence



Examples

We flip a fair coin three times. Each flip is independent. (both in the 
statistical independence sense and in the “doesn’t affect the next one” 
sense).

Is 𝐸 = {𝐻𝐻𝐻} independent of 𝐹 =“at most two heads”?

Are 𝐴 =“the first flip is heads” and 𝐵 =“the second flip is tails” 
independent?



Examples

Is 𝐸 = {𝐻𝐻𝐻} independent of 𝐹 =“at most two heads”?

ℙ 𝐸 ∩ 𝐹 = 0 (can’t have all three heads and at most two heads). 

ℙ 𝐸 = 1/8, ℙ 𝐹 = 7/8, ℙ 𝐸 ∩ 𝐹 ≠ ℙ 𝐸 ℙ(𝐹).

Are 𝐴 =“the first flip is heads” and 𝐵 =“the second flip is tails” 
independent?

ℙ 𝐴 ∩ 𝐵 = 2/8 (uniform measure, and two of eight outcomes meet 
both 𝐴 and 𝐵.

ℙ 𝐴 = 1/2, ℙ 𝐵 = 1/2
2

8
=

1

2
⋅
1

2
. These are independent!



Hey Wait

I said “the flips are independent” why aren’t 𝐸, 𝐹 independent?

“the flips are independent” means events like <the first flip is blah>” is 
independent of events like <the second flip is blah>

But if you have an event that involves both flip one and two that might 
not be independent of an event involving flip one or two. 


