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Lecture 6



But first one more example with 
uniform probability spaces!



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space

Probability Measure

Event

Probability



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: { 𝑥, 𝑦 : 𝑥 and 𝑦 are different cards }

Probability Measure: uniform measure ℙ 𝜔 =
1

52⋅51

Event: all pairs with equal values

Probability:
13⋅𝑃 4,2

52⋅51



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability:
13⋅𝑃 4,2 ⋅50!

52!



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability: 
13⋅𝑃 4,2 ⋅50 ∗49 ∗48 ∗⋯.∗2 ∗1

52 ∗ 51 ∗ 50 ∗49 ∗48 ∗ …∗2∗1



Takeaway

There’s often information you “don’t need” in your sample space.

It won’t give you the wrong answer.

But it sometimes makes for extra work/a harder counting problem,

Good indication: you cancelled A LOT of stuff that was common in the 
numerator and denominator.



Few notes about events and samples spaces

• If you’re dealing with a situation where you may be able to use a  
uniform probability space, make sure to set up the sample space in a 
way that every outcome is equally likely.

•Try not overcomplicate the sample space – only include the information 
that you need in it. 

•When you define an event, make sure it is a subset of the sample space!



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if ?

ℙ 𝐸 = 1 if and only if ?



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if an event can’t happen.

ℙ 𝐸 = 1 if and only if an event is guaranteed (every outcome outside 
𝐸 has probability 0). 



Conditional Probabilities



Conditioning

You roll a fair red die and a fair blue die (without letting the dice affect 
each other).

But they fell off the table and you can’t see the results.

I can see the results – I tell you the sum of the two dice is 4. 

What’s the probability that the red die shows a 5, conditioned on 
knowing the sum is 4?



Conditioning

You roll a fair red die and a fair blue die (without letting the dice affect 
each other).

But they fell off the table and you can’t see the results.

I can see the results – I tell you the sum of the two dice is 4. 

What’s the probability that the red die shows a 5, conditioned on 
knowing the sum is 4?

It’s 0. 

Without the conditioning it was 1/6.



Conditioning

When I told you “the sum of the dice is 4” we restricted the sample 
space. 

The only remaining outcomes are { 1,3 , 2,2 , 3,1 } out of 
1,2,3,4,5,6 × {1,2,3,4,5,6}.

Outside the (restricted) sample space, the probability is going to 
become 0. What about the probabilities inside?



Conditional Probability

Just like with the formal definition of probability, this is pretty abstract.
It does accurately reflect what happens in the real world.

If ℙ 𝐵 = 0, we can’t condition on it (it can’t happen! There’s no point in 
defining probabilities where we know 𝐵 has not happened) – ℙ(𝐴|𝐵) is 
undefined when ℙ 𝐵 = 0.

For an event 𝐵, with ℙ 𝐵 > 0,
the “Probability of 𝐴 conditioned on 𝑩” is 

ℙ 𝑨 𝑩 =
ℙ 𝑨 ∩ 𝑩

ℙ 𝑩

Conditional Probability



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐵)



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐵)

ℙ 𝐴 ∩ 𝐵 = ℙ ∅ = 0
ℙ 𝐵 = 3/36

𝑃 𝐴 𝐵 =
0

3/36



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)

ℙ 𝐴 ∩ 𝐶 = 1/36
ℙ 𝐶 = 6/36

𝑃 𝐴 𝐶 =
1/36

6/36



Conditioning Practice

Red die 6 
conditioned on 
sum 7

Red die 6 
conditioned on 
sum 9

Sum 7 conditioned 
on red die 6

.

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Take a few minutes to work on 

this with the people around you! 

(also on your handout)



Conditioning Practice

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

A ~ Red die 6 

B ~ Sum is 7

ℙ 𝐴 𝐵

= ℙ(𝐴 ∩ 𝐵)/𝑃(𝐵)

=

= 1/6



Conditioning Practice

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

A ~ Red die 6 

C ~ Sum is 9

ℙ 𝐴 𝐶

= ℙ(𝐴 ∩ 𝐶)/𝑃(𝐶)

=

= 1/4



Conditioning Practice

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

B ~ Sum is 7 

A ~ Red die is 6

ℙ 𝐵 𝐴

= ℙ(𝐵 ∩ 𝐴)/𝑃(𝐴)

=

= 1/6



Conditioning Practice

Red die 6 
conditioned on 
sum 7 1/6

Red die 6 
conditioned on 
sum 9 1/4

Sum 7 conditioned 
on red die 6 1/6

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Direction Matters

Are ℙ(𝐴|𝐵) and ℙ(𝐵|𝐴) the same?



Direction Matters

No! ℙ(𝐴|𝐵) and ℙ(𝐵|𝐴) are different quantities.

ℙ(“traffic on the highway” | “it’s snowing”) is close to 1

ℙ(“it’s snowing” | “traffic on the highway”) is much smaller; there many 
other times when there is traffic on the highway

It’s a lot like implications – order can matter a lot!

(but there are some 𝐴, 𝐵 where the conditioning doesn’t make a 
difference)



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Willy Wonka

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?

Which do you think is closest to the right answer? A. 0.1%

B. 10%

C. 50%

D. 99%



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

What probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have 
a golden ticket?



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

What probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have 
a golden ticket?

ℙ(𝐵)

ℙ(𝐴|𝐵)

ℙ 𝐴 ത𝐵

ℙ(𝐵|𝐴)



Conditioning

Let 𝐴 be the event the scale ALERTS you

Let 𝐵 be the event your bar has a ticket. 

What probabilities are each of these? 

ℙ(𝐵) = 0.1%

ℙ(𝐴|𝐵) = 99.9%

ℙ(𝐴| ത𝐵) = 1%

ℙ(𝐵|𝐴) = ??? 



Reversing the Conditioning

All of our information conditions on whether 𝐵 happens or not – does 
your bar have a golden ticket or not?

But we’re interested in the “reverse” conditioning. We know the scale 
alerted us – we know the test is positive – but do we have a golden 
ticket?

ℙ(𝐵) = 0.1%

ℙ(𝐴|𝐵) = 99.9%

ℙ(𝐴| ത𝐵) = 1%

ℙ(𝐵|𝐴) = ??? 



Bayes Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵



Bayes Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

.001



Filling In

What’s ℙ(𝐴)?

We’ll use a trick called “the law of total probability”:

ℙ 𝐴 = ℙ 𝐴 𝐵 ⋅ ℙ 𝐵 + ℙ 𝐴 ത𝐵 ⋅ 𝑃 ത𝐵

      = 0.999 ⋅ .001 + .01 ⋅ .999

     = .010989



Law of Total Probability

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

A partition of a set 𝑆 is a family of subsets 𝑆1, 𝑆2, … , 𝑆𝑘 such that:

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖, 𝑗 and

𝑆1 ∪ 𝑆2 ∪ ⋯ ∪ 𝑆𝑘 = 𝑆. 

i.e. every element of Ω is in exactly one of the 𝐴𝑖.



Law of Total Probability

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

For any event 𝑬, 

ℙ 𝑬 =  ෍

𝐚𝐥𝐥 𝒊

ℙ 𝑬|𝑨𝒊 ℙ(𝑨𝒊)

Law of Total Probability



Why?

The Proof is actually pretty informative on what’s going on. 

σall 𝑖 ℙ 𝐸|𝐴𝑖 ℙ(𝐴𝑖)

= σall 𝑖
ℙ 𝐸∩𝐴𝑖

ℙ 𝐴𝑖
⋅ ℙ(𝐴𝑖) (definition of conditional probability)

= σall 𝑖 ℙ 𝐸 ∩ 𝐴𝑖

= ℙ(𝐸)

The 𝐴𝑖 partition Ω, so 𝐸 ∩ 𝐴𝑖 partition 𝐸. Then we just add up those 
probabilities. 
Ability to add follows from the “countable additivity” axiom.

𝐴1 𝐴2
𝐴3

𝐸



Bayes Rule

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ .010989

.001

Solving ℙ 𝐵 𝐴 =
1

11
, i.e. about 0.0909.

Only about a 10% chance that the bar has the golden ticket!



Wait a minute…

That doesn’t fit with many of our guesses. What’s going on?

Instead of saying “we tested one and got a positive” imagine we tested 
1000. ABOUT how many bars of each type are there?

(about) 1 with a golden ticket 999 without. Lets say those are exactly 
right.

Lets just say that one golden is truly found

(about) 1% of the 999 without would be a positive. Lets say it’s exactly 
10.

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 

you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 

(falsely) alert you only 1% of the time. 



Visually

Gold bar is the one (true) golden ticket bar.

Purple bars don’t have a ticket and tested 

negative.

Red bars don’t have a ticket, but tested 

positive.

The test is, in a sense, doing really well. 

It’s almost always right.

The problem is it’s also the case that the 

correct answer is almost always “no.”



Updating Your Intuition

     Take 1: The test is actually good and has VASTLY increased our belief 
that there IS a golden ticket when you get a positive result.

If we told you “your job is to find a Wonka Bar with a golden ticket” 
without the test, you have 1/1000 chance, with the test, you have (about) 
a 1/11 chance. That’s (almost) 100 times better!

This is actually a huge improvement! 



Updating Your Intuition

     Take 2: Humans are really bad at intuitively understanding very large 
or very small numbers.

When I hear “99% chance”, “99.9% chance”, “99.99% chance” they all go 
into my brain as “well that’s basically guaranteed” And then I forget how 
many 9’s there actually were.

But the number of 9s matters because they end up “cancelling” with the 
“number of 9’s” in the population that’s truly negative. We’ll talk about 
this a little more on Friday in the applications.



Updating Your Intuition

     Take 3: View tests as updating your beliefs, not as revealing the truth.

Bayes’ Rule says that ℙ(𝐵|𝐴) has a factor of ℙ(𝐵) in it. You have to 
translate “The test says there’s a golden ticket” to “the test says you 
should increase your estimate of the chances that you have a golden 
ticket.”

A test takes you from your “prior” beliefs of the probability to your 
“posterior” beliefs.
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