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CSE 312: Foundations of Computing II

Practice Final Exam

Instructions:

• Give your answers in the spaces provided on these sheets.

• Give a brief justification for each answer. Usually it is sufficient just to show the
formula you are using and then substitute into the formula according to the problem
details. Don’t forget to define any events or random variables that you use, so that we
know what your variables represent.

• If you continue an answer on the back of a page, be sure to indicate that on the front
of the page.

• No calculators or other electronic devices allowed.
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Reference Sheet

1. Formulas related to permutations and combinations.

•
(
n
k

)
= n!

k!·(n−k)! .

• Binomial identity: (x+ y)n =
(
n
0

)
xn +

(
n
1

)
xny + . . .+

(
n
n

)
yn.

2. Inclusion exclusion principle:

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ · · ·+ |An| − |A1 ∩ A2| − · · · − |An−1 ∩ An|+ · · · .

3. Bayes’ rule: P (A | B) = P(B|A)·P(A)
P(B)

.

4. Chernoff-Hoeffding bound: If X is sum of independent Bernoulli’s with mean µ, then

P (|X − µ| > δµ) ≤ 2eδ
2µ/(2+δ).

5. Some standard discrete distributions:

distribution probability expectation variance
Bernoulli P (x = 1) = p,P (x = 0) = 1− p p p− p2
Binomial P (X = k) =

(
n
k

)
pk(1− p)n−k pn (p− p2)n

Geometric P (X = k) = p(1− p)k−1 1/p 1−p
p2

Poisson P (X = k) = e−λ · λk
k!

λ λ

6. Some standard continuous distributions are shown below. Here Φ(x) is the cdf of the
standard normal.

distribution pdf cdf expectation variance mgf

Normal 1√
2πσ
· e−

(x−µ)2

2σ2 Φ((x− µ)/σ) µ σ2 etµ · et2σ2/2

Exponential λe−λt 1− e−λt 1/λ 1/λ2 n/a

2



1. For each of the following assertions:

• (3 points) State whether they are True or False.

• (2 points) Briefly justify your answer.

(a) The number of distinct rearrangements of the letters of the word BALLOON in
which B and N occur together is 6!

2!2!
.

False. Should be 2 · 6!
2!2!

(b) Let A and B be events in the same sample space. If P (A|B) = 1/2, then
P (A|Bc) = 1/2.

False. If A ⊂ B, then P (A|Bc) = 0.

(c) 50% of all rainy days start off cloudy. However, 40% of days start cloudy. If only
10% of the days are rainy, then the chance of rain during the day given that the
morning is cloudy is 12.5%.

True.

By Bayes rule,

P (rain|cloud) =
P (rain) · P (cloud|rain)

P (cloud)

=
0.1 · 0.5

0.4
= 0.125.

(d) If X is a random variable taking on non-negative integer values, and for each
integer k, let Ek be the event that X = k. Then the set of events E0, E1, . . . form
a partition of the probability space.

True.

(e) Suppose X1, . . . , Xk are pairwise independent real valued random variables. Then
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Var (X1 + . . .+Xk) = Var (X1) + . . .+ Var (Xk).

True.

Var (X1 +X2 + . . .+Xk)

= E
(
(X1 + . . .+Xk)

2
)
− E (X1 + . . .+Xk)

2

= E
(
X2

1 + . . .+X2
k + 2X1X2 + . . .+ 2Xk−1Xk

)
− (E

(
X2

1

)
+ . . .+ E

(
X2
k

)
+ 2E (X1)E (X2) + . . .+ 2E (Xk−1)E (Xk))

= E
(
X2

1

)
− E (X1)

2 + E
(
X2

2

)
− E (X2)

2 + . . .+ E
(
X2
k

)
− E (Xk)

2

= Var (X1) + . . .+ Var (Xk) ,

where we used that E (XiXj) = E (Xi)E (Xj) since the variables are pairwise
independent.

(f) Let X ∈ {1, 2, 3, 4} be uniformly random and Y be independent and uniformly
random in {1, 2, 3, 4, 5}. Then P (X = Y ) = 1/5.

True.

We have,

P (X = Y ) = P (X = 1, Y = 1) + P (X = 2, Y = 2) + . . .+ P (X = 5, Y = 5)

= P (X = 1)P (Y = 1) + P (X = 2)P (Y = 2) + . . .+ P (X = 5)P (Y = 5)

= (1/4)(1/5) + . . .+ (1/4)(1/5) + 0(1/5) = 1/5.

(g) IfX has a Poisson distribution with parameter 3, then 2X has Poisson distribution
with paramter 6.

False. Writing down the expression for P (2X = k) implies that 2X is not Poisson.

(h) Let X be a real random variable with PDF f . Then the PDF of 2X is given by∫∞
−∞ f(x′)f(x− x′)dx′.

False.
∫∞
−∞ f(x′)f(x − x′)dx′ is the PDF of X1 + X2 where X1 and X2 are inde-

pendent and have the same PDF f . Var (2X) = 4Var (X) and Var (X1 +X2) =

4



2Var (X). Hence, if Var (X) 6= 0, we can conclude that the PDF of 2X is different
from

∫∞
−∞ f(x′)f(x− x′)dx′.

(i) We have n balls and n bins. Each ball is thrown into a uniform random bin and
each throw is independent of the other. Let Xi be 1 if the i’th bin is non-empty
and 0 otherwise. Define X = X1 + . . .+Xn. We can now apply Chernoff’s bound
to say

P (|X − E (X) | ≥ δE (X)) ≤ 2e−
δ2E(X)
2+δ .

False. This is because the Xi’s are not independent of each other.

(j) Let X and Y be random variables. If E (XY ) = E (X)E (Y ), then X and Y are
not independent.

False. Independent X, Y satisfy E (XY ) = E (X)E (Y ).

(k) Let X and Y be non-negative random variables. Then for every a > 0,

P (X + Y ≥ a) ≤ E (X) + E (Y )

a
.

True. This follows from Markov’s inequality and linearity of expectation.

(l) If X is a random variable with E
(
etX
)

= e2t
2
, then X must have a normal

distribution.

True. e2t
2

is the Moment generating function of a normal distribution with mean
0 and variance 4. Since the same Moment generating function implies the same
CDF, we can conclude that X has a normal distribution.

(m) Let X be a real random variable with CDF F . Then if a < b, we must have
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F (a) < F (b).

False. Could be equal.

(n) Suppose we are given two distributions on real numbers. For each n, suppose
X1, X2, . . . , Xn, Y1, . . . , Yn are independent random variables, with Xi sampled
according to the first distribution, and Yi sampled according to the second distri-
bution, for all i. Suppose the mean and standard deviations of the first distribu-
tion are µ1, σ1, and the corresponding parameters for the second distribution are
µ2, σ2. Then for every number α, the limit

lim
n→∞

p
(X1 +X2 + . . .+Xn + Y1 + . . .+ Yn − n(µ1 + µ2)√

n(σ2
1 + σ2

2)
< α

)
= Φ(α),

where Φ is the cdf of the standard normal.

True. Follows from the Central Limit Theorem and the fact that X1 +X2 + . . .+
Xn + Y1 + . . .+ Yn has mean n(µ1 + µ2) and variance n(σ2

1 + σ2
2).

Note. We haven’t really covered the CLT for distinct random variables in this
class.
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2. You want to get rich quickly, so you buy 10,000 lottery tickets for $1 each. Each ticket
has probability 10−6 of winning $6000, independently of the other tickets. Let random
variable X be the number of winning lottery tickets among your 10,000.

(a) (10 points) What is the probability that X = k?

P (X = k) =
(
10000
k

)
10−6k(1− 10−6)10000−k.

(b) (10 points) Give the parameters for the Poisson random variable Y that approxi-
mates X well, and use the Poisson approximation to write a formula that should
estimate the probability that you make a net profit with your 10,000 tickets.

Y is a Poisson with parameter λ = 10000 · 10−6 = 10−2. Observe that we make a
net profit if X ≥ 2. We estimate P (X ≥ 2) by P (Y ≥ 2). We know that

P (Y ≥ 2) = 1− P (Y = 0)− P (Y = 1) = 1− e−λ − e−λλ.
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3. The time it takes to write a piece of software is modeled as a continuous random
variable X from an unknown distribution. You would like to be able to guarantee a
client that, with high probability, the software will be completed within 48 days. What
is the best guarantee you could give under each of the following conditions? Justify
your answer.

(a) (6 points) You know that X has mean 20. Give an exact answer as a simplified
fraction.

The best guarantee is given by Markov’s inequality:

P (X ≥ 48) ≤ 20/48.

Therefore, P (X < 48) = 1− P (X ≥ 48) ≥ 1− 20/48.

(b) (6 points) You know that X has mean 20 and variance 100. Give an exact answer
as a simplified fraction.

By Chebyshev’s inequality,

P (|X − 20| ≥ 28) ≤ 100/282.

Therefore, P (X < 48) = 1− P (X ≥ 48) ≥ 1− 100/282.

(c) (8 points) You know that X is well approximated by the normal with mean 20
and standard deviation 100. Give your answer in terms of the cdf of the standard
normal, Φ(x).
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Note that X−20
100

is distributed according to a normal with mean 0 and variance 1.
We have,

P (X < 48) = P
(
X − 20

100
<

28

100

)
= Φ(0.28).
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4. You are playing a slot machine for which you must insert $1 per play. It pays you back
$10 with probability 0.02, pays $5 with probability 0.1, and pays nothing otherwise.
Let the random variable X be your net gain in dollars on a single play. (Net gain
includes the $1 you pay to play. For example, if the machine pays you back $10, your
net gain is $9.)

(a) (5 points) Compute E[X] exactly, with no rounding.

Note that

X =


9, with probability 0.02

4, with probability 0.1

−1, with probability 0.88.

Therefore, E[X] = 9 · 0.02 + 4 · 0.1 + (−1) · 0.88 = −0.3.

(b) (7 points) Compute Var(X) exactly, with no rounding.

Var (X) = (9 + 0.3)2 · 0.02 + (4 + 0.3)2 · 0.1 + (−1 + 0.3)2 · 0.88 = 4.01.

(c) (8 points) Let Y be your total net gain in 20 independent plays of this slot
machine. Use the Central Limit Theorem to estimate the probability that you
make a profit. Express your answer in terms of the cdf of the standard normal.

Y is a normal with mean −6 and variance 80.2. Therefore,

P (Y > 0) = 1− P (Y ≤ 0) = 1− P
(
Y + 6

8.95
≤ 0.67

)
= 1− Φ(0.67).
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5. You are in a disreputable casino, where you suspect they use a loaded 6-sided die.
This loaded die rolls a 1 with probability 3θ (and rolls 2 with the same probability),
rolls a 3 with probability 2θ (and rolls 4 with the same probability), and rolls a 5
with probability 1

2
− 5θ (and rolls 6 with the same probability), where 0 < θ < 0.1

is unknown. In order for you to beat the casino, it will help if you can estimate the
value of θ. To do this, you record the outcomes of several independent rolls of the die
as follows:

outcome 1 2 3 4 5 6
frequency 6 4 2 6 2 3

Find the maximum likelihood estimator θ̂ of θ. Show how to derive θ̂, and don’t forget
to show that it is a maximum.

(Hint to save you work: you will get the correct answer to this part even if you make the
simplifying assumption that the first 6 rolls are 1, the next 4 rolls are 2, etc. Without
this assumption, your likelihood function would have some complicated multinomial
coefficient, but that factor has no dependence on θ so you can ignore it.)

The likelihood function is defined as

L(θ) = (3θ)6 · (3θ)4 · (2θ)2 · (2θ)6 · (1/2− 5θ)2 · (1/2− 5θ)3

= (3θ)10 · (2θ)8 · (1/2− 5θ)5.

We have to find the value of θ that maximizes L. It is sufficient to maximize

f(θ) = 10 log 3θ + 8 log 2θ + 5 log(1/2− 5θ).

We know that

f ′(θ) =
10

θ
+

8

θ
− 25

1/2− 5θ
=

18

θ
− 50

1− 10θ
.

Solving for f ′(θ) = 0, we get that θ = 9
115

.

To verify that this is the maximizer, we now compute f ′′(θ).

f ′′(θ) = −18

θ2
− 500

(1− 10θ)2
.

Since 0 < θ < 0.1, we can conclude that f ′′(θ) ≤ 0, implying that the function is
concave and θ = 9

115
is the maximizer.
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