Information Theory



Shannon’s Information Theory

Suppose X € {1,2,...,n} is a discrete random variable.
How much do you learn when you see X?

How many bits are needed to encode X?



Encoding

X~ {1,....N)

Natural binary encoding:
write X in binary.

Length:
| X| = [logN]

Can we use the PMF of X to do better?

Encode high probability points with short strings??



Encoding

Example
1/2 fa=1
P(X — a) — { 1/(2(n — 1)) otherwise.

0 if X =1,
1, binary encoding of X otherwise.

enc(X) = {

[lencX)|]=1/2-1+1/2-(|log(N—-1)] +1) < (logN)/2.




Encoding text files

Use short strings for e,t,a,0,l,...
What about video/music files?

What is the principled approach?
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Encoding

A prefix-free encoding of {1,..., N} a map

enc:{1l,....N} - {0,1}*

soO that

If 1 # j, then enc(i) is not a prefix of enc().

Example: enc(1) = 0, enc(2) = 10,enc(3) =111, enc(4) = 110

0110101011100 uniquely encodes 1,4,2,2.3,1,1.



Shannon’s Idea

Entropy:

Intuition: If P(X = a) = 1/2, then we should be able to have
lenc(a) | ~ k.

Theorem: There is a prefix-free enc with | E[enc(X)]| < H(X) + 1.
Conversely, every prefix-free enc must have |E[enc(X)]| > H(X).




Entropy:

H(X) = Z P(X = x) - log, :

P(X = x)

Theorem: There is a prefix-free encoding with |enc(X)| < H(X) + 1.

Conversely, every prefix-free encoding must have |enc(X) | > H(X).
Pf Idea:

First sort the elements x;, x,, ... so that

Let k = [log(1/p(X = x;))|. Find a k bit string to represent x;.

Let k = [log(1/p(X = x,))|. Find a k bit string to represent x,, but not a

superstring of any prev string. Can show that such a string will always be
available.



Properties of Entropy

Entropy:
H(X) = Z P(X = x) - log,

P(X = x)

Fact: If X is uniform, then H(X) = log V.
Fact: 0 < H(X) < logN.

Fact: If X = X, X,, ..., X ,then H(X) < HX,)+ HX,) + ... + HX).



Chain-Rule of Entropy

Entropy:
H(X) = Z P(X = x) - log,

- P(X = x)
Suppose X, Y are jointly distributed. Write p(x) = P(X = x).

HX.Y) = ) p(xy) - log
Xy

= ) p(x) - p(y|x) - log
X,y

p(xy)

px)p(y|x)

’ 1
= Zp(x) - p(y|x) - log + ZP(X) - p(y|x) - log
X,V p(X) X,y

ZP(X) -p(y|x) - log

X,V

p(y|x)

’ 1
— 1 |
Zx: px) - log )

= H(X) + HY | X).

p(y|x)



Chain-Rule of Entropy

Entropy:
H(X) = Z P(X = a) - log,(1/P(X = a))

a
Suppose X, Y are jointly distributed. Write p(x) = P(X = x).

HX,Y)=HX) +HY|X) < HX) + HY)

So:

H(Y|X) < H(Y).



Example: Loomis-Whitney inequality

Suppose S is a set of N> points in 3 dimensional space.
S — {(x19y19 Z1)9 cooy (xNayNa ZN)}

R YERE W"",ﬁ; i
Let SX — {xl’ Tt 'XN}’ Sy — {y19 AR yN}’ SZ = {Zla AR ZN} :{uﬁ},‘g,‘ "
.’;ﬂlp,‘i%} ‘
Claim: One of §, Sy, S, must be of size > N. _
// . 25 .
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Example: Loomis-Whitney inequality

Suppose S is a set of N> points in 3 dimensional space.
S — {(x19y19 Z1)9 cooy (xNayNa ZN)}

| et Sx — {xl, “.,xN}, Sy — {yl, ...,yN}, SZ — {Zl, ...,ZN}

Claim: One of §, Sy, S, must be of size > N.

Pf: Let (X, Y, Z) be a random point.

3logN =logN°’ =H(X,Y,Z) < HX) + HY) + H(2),

So one of those terms is at least log N, and the corresponding
set is of size > N.




Example: Loomis-Whitney inequality

Suppose S is a set of N> points in 3 dimensional space.
S — {(x19y19 Z])a cooy (xNayNa ZN)}
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Let Sx = {xl’ "ot xN}’ Sy = {}719 Tee yN}’ Sz = {Zla RRX ZN} (‘{ng, a

.,’r'.'.ia,"; :

tﬁi
Claim: One of 5,, 5,, 5, must be of size > V. R0 AP
Pf: Let (X, Y, Z) be a random point. - ,':.;i{:'\;-f_' "
3logN = log N* = H(X,Y,Z) < HX) + HY) + H(Z), T
So one of those terms is at least log NV, and the corresponding / g

set is of size > V. / ST

Let 5y, = L1(X, Y1)s o G YN 15 552 = {15 20)5 -+ s 20D 1
S, = 1(x,20)s oo (s 23) )

Claim: One of these three must be of size N*.



H(XY) = HX) + HY | X).

Let 5,y = 1 Y1), oo (ns YN E 552 = AV 20)s +oos Oe 20 1 S = 1K1 21D -5 (s )

Claim: One of these three must be of size N*.
Pf:

6logN=2-HXYZ)=2-HX)+2-H{Y|X)+2 - HZ|XY)
<HX)+ HY|X) f o el LT g
+H(X) + H(Z| X) o et Ut g
+H(Y) + H(Z| Y) G L0y e
= H(XY) + H(YZ) + H(ZX)). b

So, one of these terms is > 2 log NV and the corresponding projection -
IS of size > N2, / {



Union Closed Sets Conjecture

F . a family of subsets of {1,2,...,n}.
Def: & is closed under union if A, B € & impliesA UB € F.

Conjecture: If # is closed under union, thereisi € {1,2,...,n} that belongs to
at least half the sets in &.

Example: & is all subsets.



Union Closed Sets Conjecture

F . a family of subsets of {1,2,...,n}.
Def: & is closed under union if A, B € & impliesA UB € F.

Conjecture: If # is closed under union, thereisi € {1,2,...,n} that belongs to
at least half the sets in &.

Theorem: If F# is closed under union, thereisi € {1,2,...,n} that belongs to at
least 1 — 1/¢ fraction of the sets in #.
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Entropy, a review

A : random variable with distribution p(a).

H(A) = ) p(a) - log(1/p(a)) = — E[log p(a)] .
1. Chain I’Lcll/e.'
H(AB) = — El[log p(a,b)] = — E[log(p(a) - p(b|a))] = — E[log p(a)] — E[logp(b|a)] = H(A) + H(B|A).

2. Subadditivity: HLAB) < H(A) + H(B)

3. Uniform distribution has largest entropy: H(A) < log | supp(A) |.

Binary entropy function:
h(p)=p-logl/p+ (1 —p)- logl/(1—p).



Theorem: If & is closed under union, thereisi € {1,2,...,n} that belongs to at
least 1 — 1/¢ fraction of the sets in #.

Pf: Suppose not. Let A, B € & be independent and uniform. Let C = A U B.
Think of A, B, C € {0,1}".

Claim: H(C) > H(A). (contradiction!)

H(C) = ) H(C;|C.) p=Pr(A. = 0|A_)
subadditivity > Z H(C |A_;,B_)) Technical Claim: If p, g ~ u, and
i=1 “[p] > 1/¢, then E[h(pq)] > E[A(p)].
by technical claim > Z H(Al- ‘A<i) = H(A). equivalently

i=1 “[2 - h(pq) — h(p) — h(g)] > O



Communication Protocols

X f(xvy) Yy

How many bits do they need to exchange”
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Complexity of Repetition

CSIRT s Xy V) = X, 31)s L (X, )

Does computing /" require more communication than
computing f ?

Theorem: Yes, the communication should scale by 2 \/ﬁ

Proof Idea: If C bits are enough to compute f”, then C/ﬁ
bits are enough to compute f .



CSIRT s Xy V) = X, 31)s L (X, )

Does computing /" require more communication than
computing f ?
Theorem: Yes, the communication should scale by 2 \/ﬁ

Proof ldea:
1. If there is a C-bit protocol computing 1", there is a C-Dbit

protocol computing f with information C/n computing.

2. Every such protocol can be compressed to get a Cﬁ - bit
protocol.



CSIRT s Xy V) = X, 31)s L (X, )

1. If there is a C-bit protocol computing 1", there is a C-bit
protocol computing f with information C/n computing.

It X, vy, m are inputs and messages, information Is:
mi|x mi|x
x.y,m p(m| x) p(m|y)



