Information Theory a brief tour

Shannon's Information Theory

- Suppose $X \in \{1, 2, ..., n\}$ is a discrete random variable.
- How much do you *learn* when you see X ?
- How many bits are needed to encode X?

Encoding

Natural binary encoding: write X in binary.

Length: $|X| = \lceil \log N \rceil$

Can we use the PMF of X to do better?

Encode high probability points with short strings?

X ∼ {1,…,*N*}

Encoding

Example $P(X = a) = \begin{cases}$ $1/2$ if $a = 1$ $1/(2(n-1))$ otherwise.

$[|\mathsf{enc}(X)|] = 1/2 \cdot 1 + 1/2 \cdot ([\log(N-1)] + 1) \lesssim (\log N)/2.$ $(X) = \begin{cases}$ 0 if $X = 1$, 1, binary encoding of *X* otherwise.

Encoding text files

Use short strings for e,t,a,o,i,…

What about video/music files?

What is the principled approach?

Encoding

A **prefix-free** encoding of $\{1,...,N\}$ a map

enc: $\{1,...,N\} \rightarrow \{0,1\}^*$

so that

If $i \neq j$, then $enc(i)$ is not a prefix of $enc(j)$.

Example: enc $(1) = 0$, enc $(2) = 10$, enc $(3) = 111$, enc $(4) = 110$

 0110101011100 uniquely encodes $1, 4, 2, 2, 3, 1, 1$.

Shannon's Idea

Entropy: $H(X) = \sum$ *x* $P(X = x) \cdot \log_2$ 1 $P(X = x)$

Intuition: If $P(X = a) = 1/2^{\kappa}$, then we should be able to have $|enc(a)| \sim k$. $P(X = a) = 1/2^k$

Theorem: There is a prefix-free enc with $|E[enc(X)]| \leq H(X) + 1$. Conversely, every prefix-free enc must have $|E[enc(X)]| \ge H(X)$.

Theorem: There is a prefix-free encoding with $|\text{enc}(X)| \leq H(X) + 1$. Conversely, every prefix-free encoding must have $|\text{enc}(X)| \geq H(X)$. **Pf Idea:**

First sort the elements $x_1, x_2, ...$ so that $P(X = x_1) \ge P(X = x_2) \ge P(X = x_3) \dots$

Let $k = \lceil \log(1/p(X = x_1)) \rceil$. Find a k bit string to represent x_1 . Let $k = \lceil \log(1/p(X=x_2)) \rceil$. Find a k bit string to represent x_2 , but not a superstring of any prev string. Can show that such a string will always be available.

Entropy:
\n
$$
H(X) = \sum_{x} P(X = x) \cdot \log_2 \frac{1}{P(X = x)}
$$

\boldsymbol{x}

-
-
-
-
-

Properties of Entropy

Entropy: $H(X) = \sum$ *x* $P(X = x) \cdot \log_2$ 1 $P(X = x)$

Fact: If X is uniform, then $H(X) = \log N$.

 $\textbf{Fact: } 0 \leq H(X) \leq \log N.$

Fact: If $X = X_1, X_2, ..., X_n$, then $H(X) \le H(X_1) + H(X_2) + ... + H(X_n)$.

Chain-Rule of Entropy

Entropy:

$$
H(X) = \sum_{x} P(X = x) \cdot \log_2 \frac{1}{P(X = x)}
$$

Suppose X , Y are jointly distributed. Write $p(x) = P(X = x)$.

$$
H(X, Y) = \sum_{x,y} p(xy) \cdot \log \frac{1}{p(xy)}
$$

= $\sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(x)p(y|x)}$
= $\sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(x)} + \sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(y|x)}$
= $\sum_{x} p(x) \cdot \log \frac{1}{p(x)} + \sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(y|x)}$
= $H(X) + H(Y|X)$.

Chain-Rule of Entropy

Entropy:
\n
$$
H(X) = \sum_{a} P(X = a) \cdot \log_2(1/P(X = a))
$$
\nSuppose *X*, *Y* are jointly distributed. Write $p(x) = P(X = x)$.
\n
$$
H(X, Y) = H(X) + H(Y|X) \le H(X) + H(Y)
$$
\nSo:

 $H(Y|X) \leq H(Y).$

Example: Loomis-Whitney inequality

Suppose S is a set of N^3 points in 3 dimensional space. $S = \{(x_1, y_1, z_1), \ldots, (x_N, y_N, z_N)\}$

Let $S_x = \{x_1, ..., x_N\}$, $S_y = \{y_1, ..., y_N\}$, $S_z = \{z_1, ..., z_N\}$

Claim: One of S_x , S_y , S_z must be of size $\geq N$.

Example: Loomis-Whitney inequality

Suppose S is a set of N^3 points in 3 dimensional space. $S = \{(x_1, y_1, z_1), \ldots, (x_N, y_N, z_N)\}$

Let $S_x = \{x_1, ..., x_N\}$, $S_y = \{y_1, ..., y_N\}$, $S_z = \{z_1, ..., z_N\}$

Claim: One of S_x , S_y , S_z must be of size $\geq N$. **Pf**: Let (X, Y, Z) be a random point. $3 \log N = \log N^3 = H(X, Y, Z) \le H(X) + H(Y) + H(Z),$ So one of those terms is at least $\log N$, and the corresponding set is of size $\geq N$.

Example: Loomis-Whitney inequality

Suppose S is a set of N^3 points in 3 dimensional space. $S = \{(x_1, y_1, z_1), \ldots, (x_N, y_N, z_N)\}$

Let $S_x = \{x_1, ..., x_N\}$, $S_y = \{y_1, ..., y_N\}$, $S_z = \{z_1, ..., z_N\}$

Claim: One of S_x , S_y , S_z must be of size $\geq N$. **Pf**: Let (X, Y, Z) be a random point. $3 \log N = \log N^3 = H(X, Y, Z) \le H(X) + H(Y) + H(Z),$ So one of those terms is at least $\log N$, and the corresponding set is of size $\geq N$.

Let
$$
S_{xy} = \{(x_1, y_1), ..., (x_N, y_N)\}, S_{yZ} = \{(y_1, z_1), ..., (y_N, z_N)\},
$$

\n $S_{zx} = \{(x_1, z_1), ..., (x_N, z_N)\}$

Claim: One of these three must be of size N^2 .

Claim: One of these three must be of size N^2 . **Pf**:

 $H(XY) = H(X) + H(Y|X).$

Let
$$
S_{xy} = \{(x_1, y_1), ..., (x_N, y_N)\}, S_{yZ} = \{(y_1, z_1), ..., (y_N, z_N)\}, S_{zx} = \{(x_1, z_1), ..., (x_N, z_N)\}
$$

$$
6\log N = 2 \cdot H(XYZ) = 2 \cdot H(X) + 2 \cdot H(Y|X) + 2
$$

\n
$$
\leq H(X) + H(Y|X)
$$

\n
$$
+H(X) + H(Z|X)
$$

\n
$$
+H(Y) + H(Z|Y)
$$

\n
$$
= H(XY) + H(YZ) + H(ZX).
$$

So, one of these terms is $\ \geq 2 \log N$ and the corresponding projection is of size $\geq N^2$.

 $\hat{H}(Z|XY)$

= *H*(*XY*) + *H*(*YZ*) + *H*(*ZX*)

 \ddotsc

Union Closed Sets Conjecture

- \mathscr{F} : a family of subsets of $\{1,2,\ldots,n\}$.
- **Def:** $\mathscr F$ is closed under union if $A, B \in \mathscr F$ implies $A \cup B \in \mathscr F$.
- **Conjecture:** If $\mathscr F$ is closed under union, there is $i \in \{1,2,...,n\}$ that belongs to at least half the sets in ${\mathscr F}.$
- **Example:** $\mathcal F$ is all subsets.

Union Closed Sets Conjecture

- \mathscr{F} : a family of subsets of $\{1,2,\ldots,n\}$.
- **Def:** $\mathscr F$ is closed under union if $A, B \in \mathscr F$ implies $A \cup B \in \mathscr F$.
- **Conjecture:** If $\mathscr F$ is closed under union, there is $i \in \{1,2,...,n\}$ that belongs to at least half the sets in ${\mathscr F}.$
- **Theorem:** If $\mathscr F$ is closed under union, there is $i\in\{1,2, ...,n\}$ that belongs to at least $1 - 1/\phi$ fraction of the sets in ${\mathscr F}.$

Where
$$
\phi = \frac{1 + \sqrt{5}}{2}
$$
 is the **golden ratio**.

Entropy, a review

 A : random variable with distribution $p(a).$

Binary entropy function: $h(p) = p \cdot \log 1/p + (1 - p) \cdot \log 1/(1 - p).$

)] = $\mathbb{E}[\log p(a)] - \mathbb{E}[\log p(b|a)] = H(A) + H(B|A)$.

$$
H(A) = \sum_{a} p(a) \cdot \log(1/p(a)) = -\mathbb{E}[\log p(a)].
$$

1. Chain rule:

$$
H(AB) = -\mathbb{E}[\log p(a, b)] = -\mathbb{E}[\log(p(a) \cdot p(b \mid a))]
$$

2. Subadditivity: $H(AB) \leq H(A) + H(B)$ **Pf**: $H(B|A) = \sum p(a,b) \cdot \log 1/p(b|a) = \sum p(b)$ 3. Uniform distribution has largest entropy: $H(A) \leq \log |\operatorname{supp}(A)|$. *a*,*b b a* ∑ *p*(*a*|*b*) ⋅ log 1/*p*(*b*|*a*) ≤ ∑ *p*(*b*) ⋅ log∑ *p*(*a*|*b*)/*p*(*b*|*a*) = *H*(*B*) *b a*

Pf: $H(A) = \sum p(a) \cdot \log 1/p(a) \le \log \sum 1 = \log |\text{supp}(A)|$ *a a*

Theorem: If $\mathscr F$ is closed under union, there is $i\in\{1,2,...,n\}$ that belongs to at least $1 - 1/\phi$ fraction of the sets in ${\mathscr F}.$

Pf: Suppose not. Let $A, B \in \mathcal{F}$ be independent and uniform. Let $C = A \cup B$. Think of $A, B, C \in \{0,1\}^n$.

Claim: $H(C) > H(A)$. (contradiction!)

equivalently $E[2 \cdot h(pq) - h(p) - h(q)] > 0$

$$
H(C) = \sum_{i=1}^{n} H(C_i | C_{\le i})
$$

subadditivity
$$
\ge \sum_{i=1}^{n} H(C_i | A_{\le i}, B_{\le i})
$$

by technical claim
$$
> \sum_{i=1}^{n} H(A_i | A_{\le i}) = H(A).
$$

$$
p = \Pr(A_i = 0 | A_{i})
$$

$$
q = \Pr(B_i = 0 | B_{i})
$$

Technical Claim: If $p, q \sim \mu$, and $[p] > 1/\phi$, then $\mathbb{E}[h(pq)] > \mathbb{E}[h(p)]$.

Communication Protocols

How many bits do they need to exchange?

Complexity of Repetition

f n $(x_1, y_1, \ldots, x_n, y_n) = f(x_1, y_1), \ldots, f(x_n, y_n)$

Does computing f^n require more communication than computing ? *f f n*

Theorem: Yes, the communication should scale by $\,\gtrsim\, \sqrt{n}$.

Proof Idea: If C bits are enough to compute f^n , then bits are enough to compute f .

-
-

-
- *C* bits are enough to compute f^n , then C/\sqrt{n}

- Does computing f^n require more communication than computing ? *f f n*
- **Theorem**: Yes, the communication should scale by $\,\gtrsim\, \sqrt{n}$. **Proof Idea**:
- 1. If there is a C-bit protocol computing f^n , there is a C-bit protocol computing f with *information C/n* computing.
- 2. Every such protocol can be *compressed* to get a $C\sqrt{n}$ bit protocol.

f n $(x_1, y_1, \ldots, x_n, y_n) = f(x_1, y_1), \ldots, f(x_n, y_n)$

 $fⁿ$, there is a C

f n $(x_1, y_1, \ldots, x_n, y_n) = f(x_1, y_1), \ldots, f(x_n, y_n)$

- 1. If there is a C-bit protocol computing f^n , there is a C-bit protocol computing f with *information C/n* computing.
- If x , y , m are inputs and messages, information is: $E = \lfloor \log \frac{1}{10} + \log \frac{1}{100} \right)$. $E_{x,y,m}$ [log $\frac{p(m|xy)}{p(m|x)}$

f^n , there is a C

 $+ \log \frac{p(m|xy)}{y}$ *^p*(*m*[|] *^y*)]