Information Theory a brief tour

Shannon's Information Theory

- Suppose $X \in \{1, 2, ..., n\}$ is a discrete random variable.
- How much do you *learn* when you see X?
- How many bits are needed to encode X?

Encoding

$X \sim \{1, \dots, N\}$

Natural binary encoding: write X in binary.

Length: $|X| = \lceil \log N \rceil$

Can we use the PMF of *X* to do better?

Encode high probability points with short strings?

Encoding

Example $P(X = a) = \begin{cases} 1/2 & \text{if } a = 1\\ 1/(2(n-1)) & \text{otherwise.} \end{cases}$

$\operatorname{enc}(X) = \begin{cases} 0 & \text{if } X = 1, \\ 1, \text{ binary encoding of } X & \text{otherwise.} \end{cases}$ $\mathbb{E}[|\operatorname{enc}(X)|] = 1/2 \cdot 1 + 1/2 \cdot (|\log(N-1)| + 1) \leq (\log N)/2.$

Encoding text files

Use short strings for e,t,a,o,i,...

What about video/music files?

What is the principled approach?

Letter +	Relative frequency in the English language			
		Texts +	Dictiona	aries ^{[citatio}
Α	8.2%		7.8%	
В	1.5%		2.0%	
С	2.8%		4.0%	
D	4.3%		3.8%	
Е	12.7%		11.0%	
F	2.2%		1.4%	
G	2.0%		3.0%	
н	6.1%		2.3%	
I	7.0%		8.6%	
J	0.15%		0.21%	
к	0.77%		0.97%	
L	4.0%		5.3%	
М	2.4%		2.7%	
Ν	6.7%		7.2%	
0	7.5%		6.1%	
Р	1.9%		2.8%	
Q	0.095%		0.19%	
R	6.0%		7.3%	
S	6.3%		8.7%	
т	9.1%		6.7%	
U	2.8%		3.3%	
v	0.98%		1.0%	
W	2.4%		0.91%	
X	0.15%		0.27%	
Y	2.0%		1.6%	
Z	0.074%		0.44%	1

ige ^[1]					
on needed] 🔶					
•					
<u> </u>					
_					
_					
_					

Encoding

A prefix-free encoding of $\{1, \ldots, N\}$ a map

enc: $\{1, ..., N\} \rightarrow \{0, 1\}^*$

so that

If $i \neq j$, then enc(i) is not a prefix of enc(j).

Example: enc(1) = 0, enc(2) = 10, enc(3) = 111, enc(4) = 110

0110101011100 uniquely encodes 1,4,2,2,3,1,1.

Shannon's Idea

Entropy: $H(X) = \sum P(X = x) \cdot \log_2 \frac{1}{P(X = x)}$

Intuition: If $P(X = a) = 1/2^k$, then we should be able to have $|\operatorname{enc}(a)| \sim k.$

Theorem: There is a prefix-free enc with $|\mathbb{E}|\operatorname{enc}(X)|| \leq H(X) + 1$. Conversely, every prefix-free enc must have $|\mathbb{E}[enc(X)]| \ge H(X)$.

Entropy:

$$H(X) = \sum_{x} P(X = x) \cdot \log_2 \frac{1}{P(X = x)}$$

Theorem: There is a prefix-free encoding with $|enc(X)| \le H(X) + 1$. Conversely, every prefix-free encoding must have $|enc(X)| \ge H(X)$. **Pf Idea:**

First sort the elements x_1, x_2, \ldots so that $P(X = x_1) \ge P(X = x_2) \ge P(X = x_3) \dots$

Let $k = \lfloor \log(1/p(X = x_1)) \rfloor$. Find a k bit string to represent x_1 . Let $k = \lceil \log(1/p(X = x_2)) \rceil$. Find a k bit string to represent x_2 , but not a superstring of any prev string. Can show that such a string will always be available.

x)

Properties of Entropy

Entropy: $H(X) = \sum P(X = x) \cdot \log_2 \frac{1}{P(X = x)}$

Fact: If X is uniform, then $H(X) = \log N$.

Fact: $0 \le H(X) \le \log N$.

Fact: If $X = X_1, X_2, ..., X_n$, then $H(X) \le H(X_1) + H(X_2) + ... + H(X_n)$.

Chain-Rule of Entropy

Entropy:

$$H(X) = \sum_{x} P(X = x) \cdot \log_2 \frac{1}{P(X = x)}$$

Suppose *X*, *Y* are jointly distributed. Write p(x) = P(X = x).

$$H(X, Y) = \sum_{x,y} p(xy) \cdot \log \frac{1}{p(xy)}$$

= $\sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(x)p(y|x)}$
= $\sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(x)} + \sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(y|x)}$
= $\sum_{x} p(x) \cdot \log \frac{1}{p(x)} + \sum_{x,y} p(x) \cdot p(y|x) \cdot \log \frac{1}{p(y|x)}$
= $H(X) + H(Y|X).$

Chain-Rule of Entropy

Entropy:

$$H(X) = \sum_{a} P(X = a) \cdot \log_2(1/P(X = a))$$
Suppose X, Y are jointly distributed. Write $p(x) =$

$$H(X, Y) = H(X) + H(Y|X) \le H(X) + H(Y)$$
So:

 $H(Y|X) \le H(Y).$

P(X = x).

Example: Loomis-Whitney inequality

Suppose S is a set of N^3 points in 3 dimensional space. $S = \{(x_1, y_1, z_1), \dots, (x_N, y_N, z_N)\}$

Let $S_x = \{x_1, ..., x_N\}$, $S_y = \{y_1, ..., y_N\}$, $S_z = \{z_1, ..., z_N\}$

Claim: One of S_x , S_y , S_z must be of size $\geq N$.

Example: Loomis-Whitney inequality

Suppose S is a set of N^3 points in 3 dimensional space. $S = \{(x_1, y_1, z_1), \dots, (x_N, y_N, z_N)\}$

Let $S_x = \{x_1, ..., x_N\}$, $S_y = \{y_1, ..., y_N\}$, $S_z = \{z_1, ..., z_N\}$

Claim: One of S_x , S_y , S_z must be of size $\geq N$. **Pf**: Let (X, Y, Z) be a random point. $3 \log N = \log N^3 = H(X, Y, Z) \le H(X) + H(Y) + H(Z),$ So one of those terms is at least $\log N$, and the corresponding set is of size $\geq N$.

Example: Loomis-Whitney inequality

Suppose S is a set of N^3 points in 3 dimensional space. $S = \{(x_1, y_1, z_1), \dots, (x_N, y_N, z_N)\}$

Let $S_x = \{x_1, ..., x_N\}$, $S_y = \{y_1, ..., y_N\}$, $S_z = \{z_1, ..., z_N\}$

Claim: One of S_x , S_y , S_z must be of size $\geq N$. **Pf**: Let (X, Y, Z) be a random point. $3\log N = \log N^3 = H(X, Y, Z) \le H(X) + H(Y) + H(Z),$ So one of those terms is at least $\log N$, and the corresponding set is of size $\geq N$.

Let
$$S_{xy} = \{(x_1, y_1), \dots, (x_N, y_N)\}, S_y z = \{(y_1, z_1), S_{zx} = \{(x_1, z_1), \dots, (x_N, z_N)\}$$

Claim: One of these three must be of size N^2 .

 $\ldots, (y_N, z_N)\},$

H(XY) = H(X) + H(Y|X).

Let
$$S_{xy} = \{(x_1, y_1), \dots, (x_N, y_N)\}, S_y z = \{(y_1, z_1), \dots, (x_N, y_N)\}$$

Claim: One of these three must be of size N^2 . Pf:

$$6 \log N = 2 \cdot H(XYZ) = 2 \cdot H(X) + 2 \cdot H(Y|X)$$

$$\leq H(X) + H(Y|X)$$

$$+H(X) + H(Z|X)$$

$$+H(Y) + H(Z|X)$$

$$= H(XY) + H(YZ) + H$$

So, one of these terms is $\geq 2 \log N$ and the corresponding projection is of size $\geq N^2$.

..., (y_N, z_N) }, $S_{zx} = \{(x_1, z_1), \dots, (x_N, z_N)\}$

 $() + 2 \cdot H(Z|XY)$

Y) (ZX).

-.*

Union Closed Sets Conjecture

- \mathcal{F} : a family of subsets of $\{1, 2, \dots, n\}$.
- **Def:** \mathscr{F} is closed under union if $A, B \in \mathscr{F}$ implies $A \cup B \in \mathscr{F}$.
- **Conjecture:** If \mathscr{F} is closed under union, there is $i \in \{1, 2, ..., n\}$ that belongs to at least half the sets in \mathcal{F} .
- **Example**: \mathcal{F} is all subsets.

Union Closed Sets Conjecture

- \mathcal{F} : a family of subsets of $\{1, 2, ..., n\}$.
- **Def:** \mathscr{F} is closed under union if $A, B \in \mathscr{F}$ implies $A \cup B \in \mathscr{F}$.
- **Conjecture:** If \mathscr{F} is closed under union, there is $i \in \{1, 2, ..., n\}$ that belongs to at least half the sets in \mathscr{F} .
- **Theorem:** If \mathscr{F} is closed under union, there is $i \in \{1, 2, ..., n\}$ that belongs to at least $1 1/\phi$ fraction of the sets in \mathscr{F} .

Where
$$\phi = \frac{1 + \sqrt{5}}{2}$$
 is the golden ratio.

Entropy, a review

A : random variable with distribution p(a).

$$H(A) = \sum_{a} p(a) \cdot \log(1/p(a)) = -\mathbb{E}[\log p(a)]$$

1. Chain rule:
$$H(AB) = -\mathbb{E}[\log p(a, b)] = -\mathbb{E}[\log(p(a) \cdot p(b \mid a))]$$

2. Subadditivity: $H(AB) \leq H(A) + H(B)$ $Pf: H(B|A) = \sum p(a,b) \cdot \log 1/p(b|a) = \sum p(b) \sum p(a|b) \cdot \log 1/p(b|a) \le \sum p(b) \cdot \log \sum p(a|b)/p(b|a) = H(B)$ a.b b a 3. Uniform distribution has largest entropy: $H(A) \leq \log |\operatorname{supp}(A)|$. $\mathbf{Pf}: H(A) = \sum p(a) \cdot \log 1/p(a) \le \log \sum 1 = \log |\operatorname{supp}(A)|$

 $\boldsymbol{\mathcal{O}}$

Binary entropy function: $h(p) = p \cdot \log 1/p + (1-p) \cdot \log 1/(1-p).$

$] = -\mathbb{E}[\log p(a)] - \mathbb{E}[\log p(b \mid a)] = H(A) + H(B \mid A).$

Theorem: If \mathscr{F} is closed under union, there is $i \in \{1, 2, ..., n\}$ that belongs to at least $1 - 1/\phi$ fraction of the sets in \mathscr{F} .

Pf: Suppose not. Let $A, B \in \mathcal{F}$ be independent and uniform. Let $C = A \cup B$. Think of $A, B, C \in \{0,1\}^n$.

Claim: H(C) > H(A). (contradiction!)

$$\begin{split} H(C) &= \sum_{i=1}^{n} H(C_i \mid C_{ \sum_{i=1}^{n} H(A_i \mid A_{$$

$$p = \Pr(A_i = 0 | A_{
$$q = \Pr(B_i = 0 | B_{$$$$

Technical Claim: If $p, q \sim \mu$, and $\mathbb{E}[p] > 1/\phi$, then $\mathbb{E}[h(pq)] > \mathbb{E}[h(p)]$.

equivalently $\mathbb{E}[2 \cdot h(pq) - h(p) - h(q)] > 0$

Communication Protocols

How many bits do they need to exchange?

\vec{y}

Complexity of Repetition

 $f^{n}(x_{1}, y_{1}, \dots, x_{n}, y_{n}) = f(x_{1}, y_{1}), \dots, f(x_{n}, y_{n})$

Does computing f^n require more communication than computing f?

Proof Idea: If C bits are enough to compute f^n , then C/\sqrt{n} bits are enough to compute f.

- **Theorem**: Yes, the communication should scale by $\gtrsim \sqrt{n}$.

 $f^{n}(x_{1}, y_{1}, \dots, x_{n}, y_{n}) = f(x_{1}, y_{1}), \dots, f(x_{n}, y_{n})$

- Does computing f^n require more communication than computing f?
- **Theorem:** Yes, the communication **Proof Idea**:
- 1. If there is a C-bit protocol computing f^n , there is a C-bit protocol computing f with information C/n computing.
- protocol.

ion should scale by
$$\gtrsim \sqrt{n}$$
.

2. Every such protocol can be *compressed* to get a $C\sqrt{n}$ - bit

 $f''(x_1, y_1, \dots, x_n, y_n) = f(x_1, y_1), \dots, f(x_n, y_n)$

1. If there is a C-bit protocol computing f'', there is a C-bit protocol computing f with information C/n computing.

If x, y, m are inputs and messages, information is: $\mathbb{E}_{x,y,m}\left[\log\frac{p(m \mid xy)}{p(m \mid x)} + \log\frac{p(m \mid xy)}{p(m \mid y)}\right].$