CSE 312

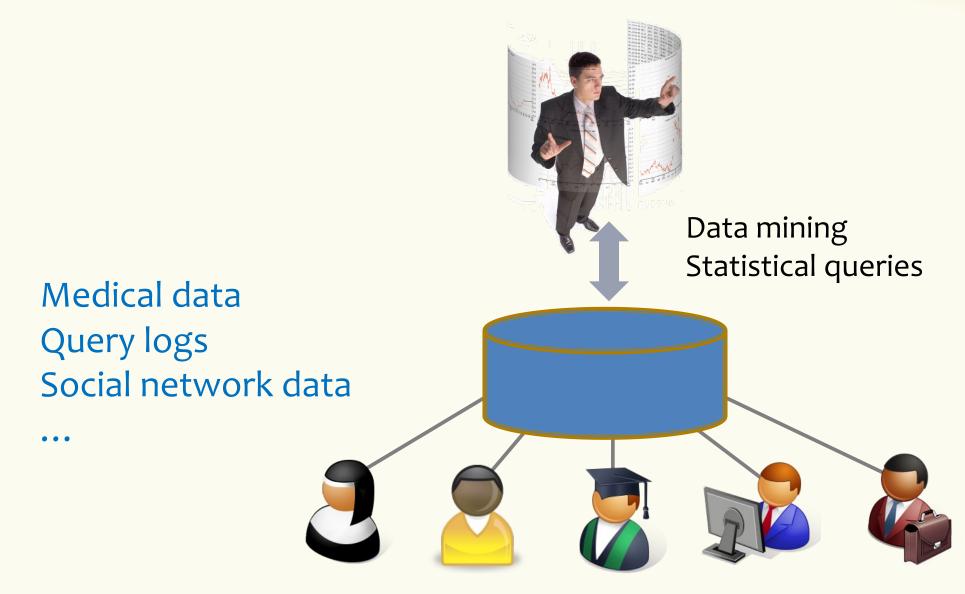
Foundations of Computing II

Lecture 26: Differential Privacy

Announcements

- Exam info posted & practice exams
 - Exam is in one week!
- Online Q&A session will be scheduled likely over weekend

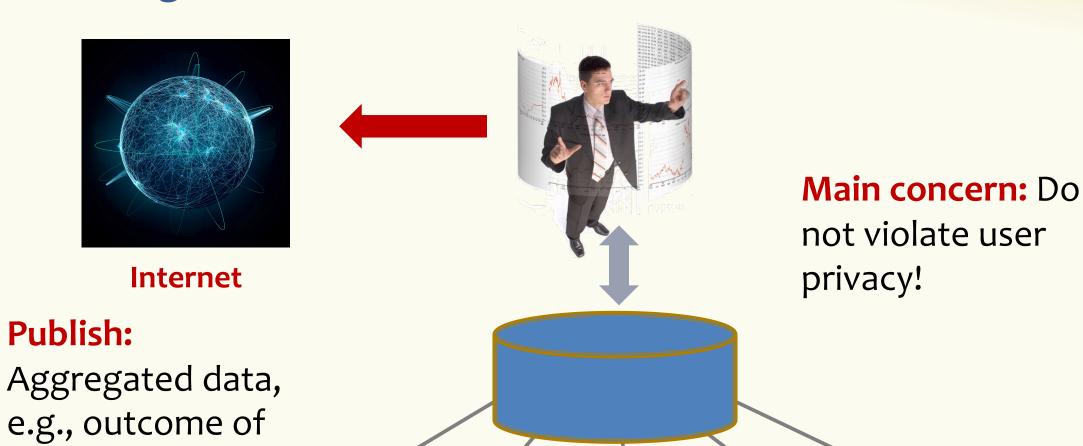
Setting



Setting – Data Release

medical study,

research paper, ...



Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - Relevant attributes removed, but ZIP, birth date, gender available
 - Considered "safe" practice
- Public voter registration record
 - Contain, among others, name, address, ZIP, birth date, gender
- Allowed identification of medical records of William Weld, governor of MA at that time
 - He was the only man in his zip code with his birth date …
 - +More attacks! (cf. Netflix grand prize challenge!)

One way out? Differential Privacy

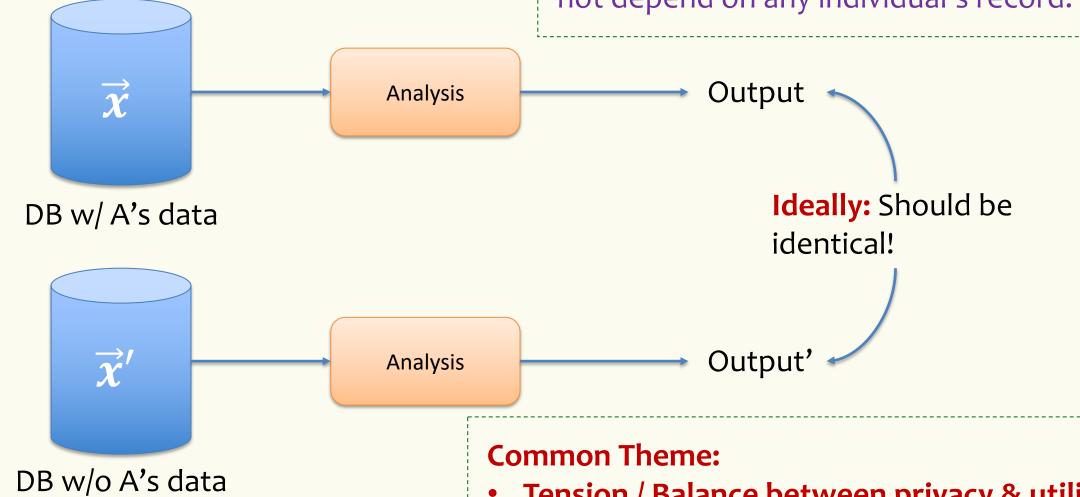
- A formal definition of privacy
 - Satisfied in systems deployed by Google, Uber, Apple, ...
- Used by 2020 census
- Idea: Any information-related risk to a person should not change significantly as a result of that person's information being included, or not, in the analysis.
 - Even with side information!

Ideal Individual's Privacy

For every individual A whose record in DB

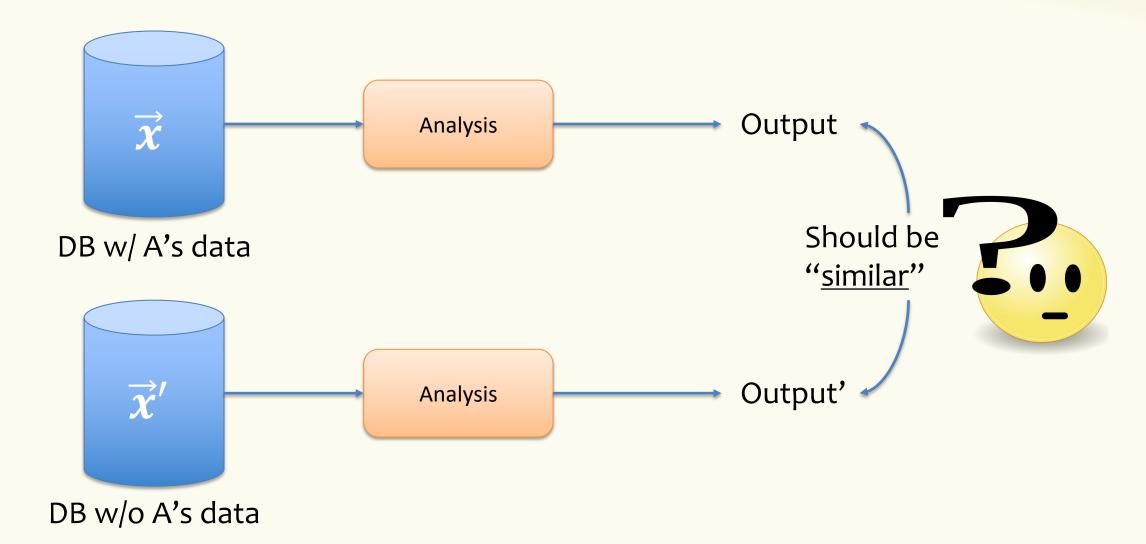
Very good for privacy.

But the output would be useless as it does not depend on any individual's record!

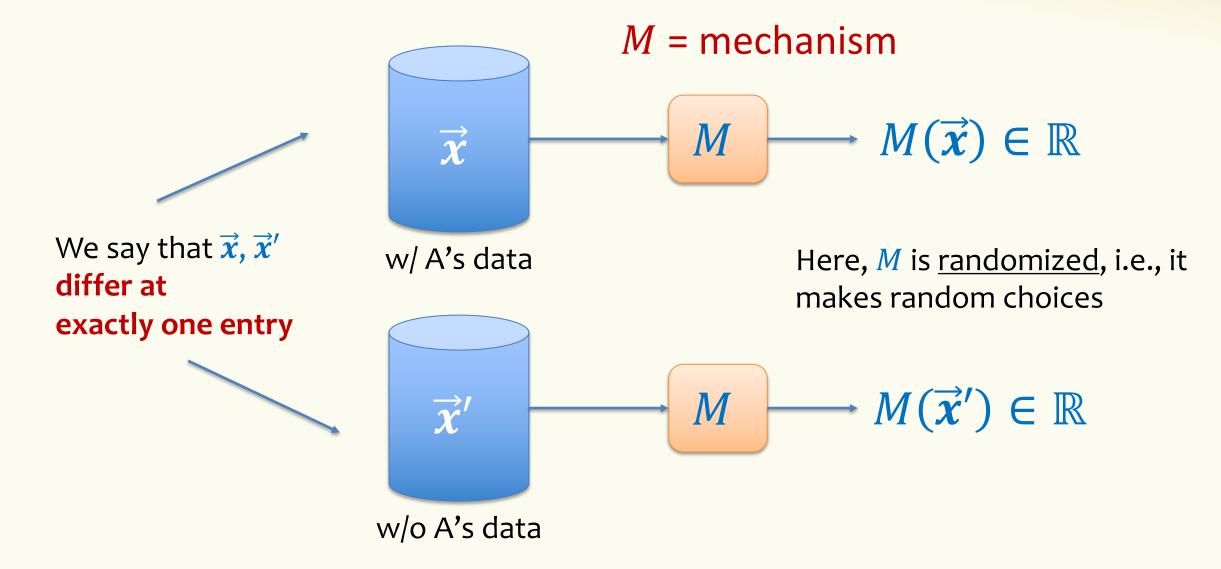


- Tension / Balance between privacy & utility
- Privacy is not a 0 / 1 property.

More Realistic Privacy Goal



Setting – Formal



Setting – Mechanism

Definition. A mechanism M is ϵ -differentially private if for all subsets $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at exactly one entry,

$$P(M(\vec{x}) \in T) \le e^{\epsilon} P(M(\vec{x}') \in T)$$

Dwork, McSherry, Nissim, Smith, '06

Think:
$$\epsilon = \frac{1}{100}$$
 or $\epsilon = \frac{1}{10}$ $e^{\epsilon} \approx 1 + \epsilon$ for small ϵ

Example – Counting Queries

 $\forall T \subseteq \mathbb{R}, P(M(\vec{x}) \in T) \leq e^{\epsilon} P(M(\vec{x}') \in T)$ for all \vec{x}, \vec{x}' that differ on one entry

- DB is a vector $\vec{x} = (x_1, ..., x_n)$ where $x_1, ..., x_n \in \{0,1\}$
 - $-x_i = 1$ if individual i has disease
 - $-x_i = 0$ means patient does not have disease or patient data wasn't recorded.
- Query: $q(\vec{x}) = \sum_{i=1}^{n} x_i$

Poll: pollev.com/stefanotessaro617

For what ϵ is $M(\vec{x}) = q(\vec{x}) \epsilon$ -differentially private?

- a) 0.1
- b) 1
- c) 100
- d) None

Here: \vec{x} and \vec{x}' differ at one entry means they differ at one single coordinate, e.g., $x_i = 1$ and $x'_i = 0$

A solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$ where Y follows a Laplace distribution with parameter ϵ

"Laplacian mechanism with parameter ϵ "



$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon |y|}$$

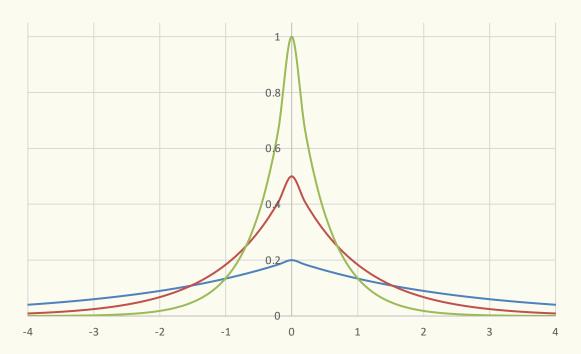
$$\mathbb{E}[Y] = 0$$

$$Var(Y) = \frac{2}{\epsilon^2}$$

A solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$ where Y follows a Laplace distribution with parameter ϵ "Laplacian mechanism with parameter ϵ "



$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon|y|}$$

Key property: For all y, Δ

$$\frac{f_Y(y)}{f_Y(y+\Delta)} \le e^{\epsilon|\Delta|}$$

Laplacian Mechanism – Privacy

Theorem. The Laplacian Mechanism with parameter ϵ satisfies ϵ -differential privacy

Goal to show: $\forall \vec{x}, \vec{x}'$ differing at one entry, $\forall [a, b]$

$$\Delta = \sum_{i=1}^{n} x'_{i} - \sum_{i=1}^{n} x_{i} | \Delta | \leq 1$$

$$P(M(\vec{x}) \in [a, b]) = \sum_{i=1}^{n} x_{i} | \Delta | \leq 1$$

$$P(M(\vec{x}) \in [a, b]) = P(s + Y \in [a, b]) = \int_{a-s}^{b-s} f_{Y}(y) dy = \int_{a}^{b} f_{Y}(y' - s) dy'$$

$$= \int_{a}^{b} f_{Y}(y' - s' + \Delta) dy' \leq e^{\epsilon |\Delta|} \int_{a}^{b} f_{Y}(y' - s') dy' \leq e^{\epsilon} \int_{a}^{b} f_{Y}(y' - s') dy'$$

$$= e^{\epsilon} P(M(\vec{x}') \in [a, b])$$

How Accurate is Laplacian Mechanism?

Let's look at $\sum_{i=1}^{n} x_i + Y$

•
$$\mathbb{E}[\sum_{i=1}^{n} x_i + Y] = \sum_{i=1}^{n} x_i + \mathbb{E}[Y] = \sum_{i=1}^{n} x_i$$

•
$$\operatorname{Var}(\sum_{i=1}^{n} x_i + Y) = \operatorname{Var}(Y) = \frac{2}{\epsilon^2}$$

This is accurate enough for large enough ϵ !

Differential Privacy – What else can we compute?

- Statistics: counts, mean, median, histograms, boxplots, etc.
- Machine learning: classification, regression, clustering, distribution learning, etc.

•

Differential Privacy – Nice Properties

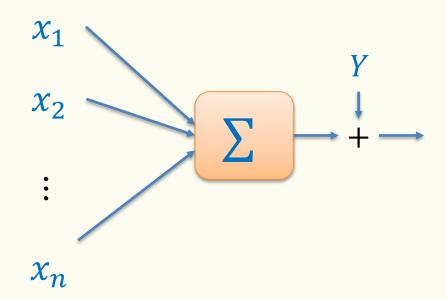
• Group privacy: If M is ϵ -differentially private, then for all $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at (at most) k entries,

$$P(M(\vec{x}) \in T) \le e^{k\epsilon} P(M(\vec{x}') \in T)$$

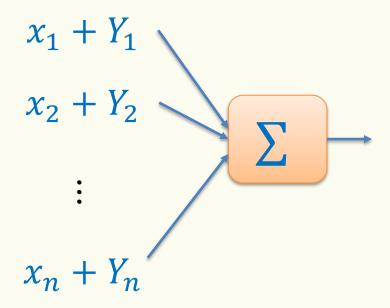
- Composition: If we apply two ϵ -DP mechanisms to data, combined output is 2ϵ -DP.
 - How much can we allow ϵ to grow? (So-called "privacy budget.")
- Post-processing: Postprocessing does not decrease privacy.

Local Differential Privacy

Laplacian Mechanism



What if we don't trust aggregator?



Solution: Add noise <u>locally!</u>

Example – Randomized Response

Mechanism M taking input $\vec{x} = (x_1, ..., x_n)$:

• For all i = 1, ..., n:

$$-y_i = x_i$$
 w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$.

$$-\hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965

Example – Randomize Response

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

- For all i = 1, ..., n:
 - $-y_i=x_i$ w/ probability $\frac{1}{2}+\alpha$, and $y_i=1-x_i$ w/ probability $\frac{1}{2}-\alpha$.

$$- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

Theorem. Randomized Response with parameter α satisfies ϵ -differential privacy, if $\alpha = \frac{e^{\epsilon}-1}{e^{\epsilon}+1}$.

Fact 1.
$$\mathbb{E}[M(\vec{x})] = \sum_{i=1}^{n} x_i$$

Fact 2.
$$Var(M(\vec{x})) \approx \frac{n}{\epsilon^2}$$

Differential Privacy – Challenges

- Accuracy vs. privacy: How do we choose *∈*?
 - Practical applications tend to err in favor of accuracy.
 - See e.g. https://arxiv.org/abs/1709.02753
 - E.g. Privacy budgets of 2, 4, 8 per application feature, not tiny as assumed. These exponents add up quickly!
- Fairness: Differential privacy hides contribution of small groups, by design
 - How do we avoid excluding minorities?
 - Very hard problem!
- Ethics: Does differential privacy incentivize data collection?

Literature

- Cynthia Dwork and Aaron Roth. "The Algorithmic Foundations of Differential Privacy".
 - https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
- https://privacytools.seas.harvard.edu/