CSE 312
Foundations of Computing Il

Lecture 24: Markov Chains



Announcements

* Exam info coming on Monday
— Bottom line: Similar to midterm, but cumulative & 2x as long

* PSet 8 is due on Wednesday prior to Thanksgiving, do not
wait that long

* PSet 9 is due on Friday, last day of class
— NO LATE DAYS




So far: probability for “single-shot” processes

Random Out Today:
utcome i .
Process - | Distribution A very special type of DTSP
D called Markov Chains

More generally: randomness can enter over many steps and
depend on previous outcomes

Random Outcome - Random Outcome > Random Outcome
Distribution Distribution Distribution
Process 1 =2 s Process2—> s Process3 =2 -
1 2 3

___________________________________________________________________________________________________________________________________________________________________

Deflnltlon A discrete-time stochastic process (DTSP) is a sequence of
random variables X (©, X x(2) where X is the value at time t.



What happens when I start working on 312...

|
timet =0 @




312 work habits

How do we interpret this diagram? This kind of

random process
is called a

Markov Chain

At each time step ¢

— | can be in one of 3 states
* Work, Surf, Email

— If l amin some state s at time ¢

* the labels of out-edges of s give the probabilities of my moving
to each of the states at time ¢ + 1 (as well as staying the same)

— so labels on out-edges sum to 1

e.g. If  am in Email, there is a 50-50 chance | will be in each of Work or Email at

the next time step, but | will never be in state Surf in the next step.
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This diagram looks vaguely familiar if you took CSE 311...

Markov chains are a special kind of
probabilistic (finite) automaton

The diagrams look a bit like those of
Deterministic Finite Automata (DFAs)
you saw in 311 except that...

* There are no input symbols on the edges

— Think of there being only one kind of input symbol “another tick of the clock”
so no need to mark it on the edge

* They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the
state they are currently in.



Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 1?

2. What is the probability that | am in state s at time 2?

Define variable X(©) to be state | am in at time ¢

Given: In state Work attimet = 0

t 0 1 2

P(X® = work) 1 | 0.4

P(X® = surf) 0 | 0.6

P(X® = Email) 0 0




Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 1?

2. What is the probability that | am in state s at time 2?

Define variable X(©) to be state | am in at time ¢

Given: In state Work attimet = 0

t 0 1 2
CII%) = P(X® = work) 1 004 =0.4-04+0.6-0.1=0.16+0.06 =0.22

P = p(x® = surf) 0 | 06 =0.4-06+0.6-0.6=0.24+0.36=0.60

¢ = p(x® = Email) | 0 0 |=04-0+0.6-03=0+0.18=0.18
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An organized way to understand the distribution of X*’

(t)

Write as a tuple (qW yqs Qg )) a.k.a. arow vector:

[2, 4P, 4]

0 1 2
P = px® =work) | 1 | 0.4 =0.4-04+0.6-0.1=0.16 + 0.06 = 0.22
P = p(x® = surf) 0 | 06 =0.4-06+0.6-0.6=0.24+0.36=0.60
g = p(x® = Email) 0 0 |=0.4-0+0.6-03=0+0.18=0.18
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An organized way to understand the distribution of X ()

a5, q§t), q] 104 06
01 06 03

Write as a “tran5|t|on probability matrix” M
* onerow/col per state. Row=now, Col=next
* eachrowsumsto 1

t 0 1 2

CII%) P(X(t) = Work) 1 004 =0.4-04+0.6-0.1=0.16+0.06 =0.22

P = p(x® = surf) 0 | 06 =0.4-06+0.6-0.6=0.24+0.36=0.60

g = p(x® = Email) 0 0 [=0.4-0+0.6-03=0+0.18=0.18
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An organized way to understand the distribution of X (t)
M

(a5, qP,qP) 104 06 07 =[qltD, gD, ¢lt+D)
0.1 06 0.3
05 0 0.5

gV =04 ¢P=04-04+06-01=016+0.06=0.22
gV =0.6 ¢ =04-06+0.6-0.6=024+036=0.60
q5” =0 g9 =04-0 +0.6-03=0 +0.18=0.18
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An organized way to understand the distribution of X (t)

M
(a5, qP,qP) 104 06 07 =[qltD, gD, ¢lt+D)
~101 06 03
" los 0o 05

7
Y4
Y4
Y4

/// qlglt/-) - 0.4 + qgt) - 0.1 + qét) - 0.5 = qlgls-l-l)

Vectf)r-.mat.rix qlgll;) 0.6 + qgt) 0.6+ q]gt) 0 = q§t+1)
multiplication
0w 0 +q-03+qy 05 = qftY

g =04 ¢ =04-04+0.6-01=016+0.06=0.22
gV =0.6 ¢ =04-06+0.6-0.6=024+036=0.60
q5” =0 g9 =04-0 +0.6-03=0 +0.18=0.18
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An organized way to understand the distribution of X (t)

M
(a5, qP,qP) 104 06 07 =[qltD, gD, ¢lt+D)
0.1 06 0.3
05 0 0.5

0 - 0.4 +q 01+ gy - 05= gt

Vectgr-.mat.rix qlgﬁ) 0.6 + qgt) 0.6+ q]gt) 0 = q§t+1)
multiplication
0w 0 +q-03+qy 05 = qftY

Write ¢(®) = [CI%); qét), q]gt)] Thenforallt > 0, qt*Y) = g®OMm

SO q(l) — q(O)M
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By induction ... we can derive

M
04 06 O
[0.1 0.6 0.3]
05 0 0.5

g = qgOM! forallt >0
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Another example:

0.5

(2 /3\A Suppose that g

We have M = [

____________________________________________________________________________

Poll: pollev.com/stefanotessaro617

What is ¢ ?

a. [03,0.7
'b. [0.6,0.4]
c. [0.7,0.3]
'd. [0.5,0.5

e. [0.4,0.6]

____________________________________________________________________________

(0) — [qéo)’qgo

0.7 0.3
0.5 0.5

| =101
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Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 1?
2. What is the probability that | am in state s at time 2?

3. What is the probability that | am in state s at some
time ¢ far in the future?

Given: In state Work attimet = 0

g =q Mt forallt = 0

What does M" look like for really big ¢ ?
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M' as t grows

10
g W S E

W [.2940 .4413 .2648
S 2942 4411 .2648
F \.2942 .4413 .2648
M6O W
4! 294117647058823
S 294117647068823
E 294117647068823

M
0.4 0.6
0.1 0.6
0.5 0

30
M -

A

S
E

S

A41176470588235
A441176470588235
A41176470588235

W [.29411764705
29411764706

g = qOMt forallt > 0

3
M 1% S E

0 W (.22 .6 .18 W [.238 .492 .270
03 s |.25 42 .33 s | .307 .402 201
0.5 E\45 3 .25 E \.335 450 .215
S E
44117647059 26470588235
44117647058 26470588235
20411764706 44117647059 26470588235
. What does this
264705882352941
264705882352041 say about g(¥?

264705882352941
18



What does this say about g‘*) = q(® Mt ?

» Note that no matter what probability distribution g(*’ is ...

g% M! is just a weighted average of the rows of M¢

e If every row of M" were exactly the same ... that would
mean that g‘®> M* would be equal to the common row

— So q'“) wouldn’t depend on g%

* The rows aren’t exactly the same but they are very close
— So q'9 barely depends on q'? after very few steps
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Observation

If gt = g then it will never change again!

Called a stationary distribution and has a special name

T = (Ty, s, g )

Solutiontomr = ™M
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Solving for Stationary Distribution

4 6 0 Stationary Distribution satisfies
M=(1 .6 .3 e w = mM,where 1= (my, s, Tg)
5 0 5 ° T[W_I_T[S-I_T[E:l
10 15 9
M = 5ar T 5y T 5

Ast — o, q¥ = m no matter what distribution g(*) is !!
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Markov Chains in general

 Asetofnstates{1,2,3,.. n}

* The state at time ¢ is denoted by X ©)
e A transition matrix M, dimensionnXxX n

M;=PX"Y =j | x® =)
e g = (qit), qgt), . q,(f)) where qi(t): P(X® =)
* Transition: LTP = g™V = g M so g(® = q(® Mt
* Astationary distribution 7 is the solution to:
m = m M, normalized so that 2;c,,mr;, = 1



The Fundamental Theorem of Markov Chains

Theorem. Any Markov chain that is
¢ irreducible” and
 aperiodic”

has a uniqgue stationary distribution 7.

Moreover, ast — o, forall i, J, ij = T1;

_____________________________________________________________________________________________________________________________________________________________________

“These concepts are way beyond us but they turn out to cover a very large class of
Markov chains of practical importance.
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