
CSE 312

Foundations of Computing II
Lecture 24: Markov Chains
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Announcements

• Exam info coming on Monday
– Bottom line: Similar to midterm, but cumulative & 2x as long

• PSet 8 is due on Wednesday prior to Thanksgiving, do not 
wait that long

• PSet 9 is due on Friday, last day of class
– NO LATE DAYS
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So far: probability for “single-shot” processes
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More generally: randomness can enter over many steps and 
depend on previous outcomes
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Definition. A discrete-time stochastic process (DTSP) is a sequence of 
random variables 𝑋(#), 𝑋(%), 𝑋(&), . . .	where 𝑋(') is the value at time 𝑡.

Today: 
A very special type of DTSP 
called Markov Chains 



What happens when I start working on 312…
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time 𝑡 = 0 



312 work habits

How do we interpret this diagram?

At each time step 𝑡
– I can be in one of 3 states
•  Work, Surf, Email

– If I am in some state 𝑠 at time 𝑡 
• the labels of out-edges of 𝑠 give the probabilities of my moving 

to each of the states at time 𝑡 + 1 (as well as staying the same)
–   so labels on out-edges sum to 1
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e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at 
the next time step, but I will never be in state Surf in the next step.

This kind of 
random process 
is called a 
Markov Chain



This diagram looks vaguely familiar if you took CSE 311 …
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Markov chains are a special kind of 
probabilistic (finite) automaton

The diagrams look a bit like those of 
Deterministic Finite Automata (DFAs) 
you saw in 311 except that…
• There are no input symbols on the edges
– Think of there being only one kind of input symbol “another tick of the clock”      

so no need to mark it on the edge
• They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the 
state they are currently in.



Many interesting questions about Markov Chains

7

1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2? 

Given:  In state Work at time 𝑡 = 0

Define variable 𝑋 $  to be state I am in at time 𝑡

𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎



Many interesting questions about Markov Chains
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1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2? 

Given:  In state Work at time 𝑡 = 0

Define variable 𝑋 $  to be state I am in at time 𝑡

𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐	

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎	

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
! =

𝑞#
! =

𝑞$
! =



An organized way to understand the distribution of 𝑋 !
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𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐	

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎	

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
! =

𝑞#
! =

𝑞$
! =

Write as a tuple (𝑞"
! , 𝑞#

! , 𝑞$
! ) a.k.a. a row vector:

[𝑞"
! , 𝑞#

! , 𝑞$
! ]



An organized way to understand the distribution of 𝑋 !
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𝑃(𝑋 ! = Work)

𝑃(𝑋 ! = Surf)

𝑃(𝑋 ! = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐	

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎	

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
! =

𝑞#
! =

𝑞$
! =

[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

Write as a “transition probability matrix” 𝑴
• one row/col per state.  Row=now, Col=next
• each row sums to 1  

𝑴



An organized way to understand the distribution of 𝑋 !
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[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞"
!%& , 𝑞#

!%& , 𝑞$
!%& ]

𝑞#
& = 𝟎. 𝟔

𝑞$
& = 𝟎

𝑞"
& = 𝟎. 𝟒

𝑞#
' = 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

𝑞$
' = 𝟎. 𝟒 ⋅ 0	 + 𝟎. 𝟔 ⋅ 0.3 = 0	 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
' = 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

𝑴



An organized way to understand the distribution of 𝑋 !
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𝑞"
! ⋅ 0.4 + 𝑞#

! ⋅ 0.1 + 𝑞$
! ⋅ 0.5 =	 𝑞"

!%&  

[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞"
!%& , 𝑞#

!%& , 𝑞$
!%& ]

Vector-matrix 
multiplication

𝑞"
! ⋅ 0.6 + 𝑞#

! ⋅ 0.6 + 𝑞$
! ⋅ 0     =	 𝑞#

!%&  

𝑞"
! ⋅ 0	 + 𝑞#

! ⋅ 0.3 + 𝑞$
! ⋅ 0.5  =	 𝑞$

!%&  

𝑞#
& = 𝟎. 𝟔

𝑞$
& = 𝟎

𝑞"
& = 𝟎. 𝟒

𝑞#
' = 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

𝑞$
' = 𝟎. 𝟒 ⋅ 0	 + 𝟎. 𝟔 ⋅ 0.3 = 0	 + 0.18 = 𝟎. 𝟏𝟖	

𝑞"
' = 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

𝑴



An organized way to understand the distribution of 𝑋 !
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𝑞"
! ⋅ 0.4 + 𝑞#

! ⋅ 0.1 + 𝑞$
! ⋅ 0.5 =	 𝑞"

!%&  

[𝑞"
! , 𝑞#

! , 𝑞$
! ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞"
!%& , 𝑞#

!%& , 𝑞$
!%& ]

Vector-matrix 
multiplication

𝑞"
! ⋅ 0.6 + 𝑞#

! ⋅ 0.6 + 𝑞$
! ⋅ 0     =	 𝑞#

!%&  

𝑞"
! ⋅ 0	 + 𝑞#

! ⋅ 0.3 + 𝑞$
! ⋅ 0.5  =	 𝑞$

!%&  

𝑴

Write 𝒒 ! = [𝑞"
! , 𝑞#

! , 𝑞$
! ] Then for all 𝑡 ≥ 0,  𝒒 !%& = 𝒒 ! 𝑴 

So 𝒒 & = 𝒒 ( 𝑴
      𝒒 ' = 𝒒 & 𝑴 = (𝒒 ( 𝑴)𝑴 = 𝒒 ( 𝑴'

      …



By induction … we can derive
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

𝑴

𝒒 ! = 𝒒 " 𝑴!  for all 𝑡 ≥ 0 



Another example:
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Clear Overcast

0.7 0.3 0.5

0.5

Suppose that 𝒒 ( = 𝑞)
( , 𝑞*

( = [0,1]

We have 𝑴 = 0.7 0.3
0.5 0.5

Poll: pollev.com/stefanotessaro617

What is 𝒒 '  ?
a. 0.3, 0.7
b. 0.6, 0.4
c. 0.7, 0.3
d. 0.5, 0.5
e. 0.4, 0.6
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Many interesting questions about Markov Chains
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1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2?

3. What is the probability that I am in state 𝑠 at some 
time 𝑡 far in the future?

Given:  In state Work at time 𝑡 = 0

𝒒 ! = 𝒒 " 𝑴!  for all 𝑡 ≥ 0 

What does 𝑴$  look like for really big 𝑡 ? 



𝑴!  as 𝑡 grows
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

𝑴

𝒒 $ = 𝒒 + 𝑴$  for all 𝑡 ≥ 0 

𝑴' 𝑴+

𝑴&( 𝑴+(

𝑴,(
What does this 
say about 𝒒 ! ?



What does this say about 𝒒 ! = 𝒒 " 𝑴!  ?

• Note that no matter what probability distribution 𝒒 "  is …    
 𝒒 𝟎 𝑴!  is just a weighted average of the rows of 𝑴!

• If every row of 𝑴!  were exactly the same …that would 
mean that 𝒒 𝟎 𝑴!  would be equal to the common row
– So 𝒒 $  wouldn’t depend on 𝒒 𝟎

• The rows aren’t exactly the same but they are very close
– So 𝒒 $  barely depends on 𝒒 𝟎  after very few steps
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Observation

If 𝒒(!%&) = 𝒒(!) then it will never change again!

Called a stationary distribution and has a special name 
	 𝝅 = (𝜋( , 𝜋), 𝜋*)

Solution to 𝝅	 = 	 𝝅	𝑴
20



Solving for Stationary Distribution
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𝑴 =
.4 .6 0
.1 .6 .3
.5 0 .5

 

    As 𝑡 → ∞, 	 𝒒($) → 𝝅   no matter what distribution 𝒒 + 	is !!

Stationary Distribution satisfies
•  𝝅	 = 	 𝝅𝑴, where  𝝅 = (𝜋/ , 𝜋0 , 𝜋1)
•  𝜋/ + 𝜋0 + 𝜋1 = 1

è 𝜋/ = 2+
34
, 	 𝜋0=

25
34
, 	 𝜋1=

6
34



Markov Chains in general

• A set of 𝑛 states {1, 2, 3, … 	𝑛}
• The state at time 𝑡 is denoted by 𝑋(!)

• A transition matrix 𝑴, dimension 𝑛×	𝑛	
𝑴𝑖𝑗 = 𝑃 𝑋 !%& = 𝑗	 𝑋(!)	 = 𝑖)

•  𝒒(!) = (𝑞&
! ,	𝑞,

! , … , 𝑞-
! ) where 𝑞.

! = 𝑃(𝑋(!)	 = 𝑖)
• Transition: LTP ⇒ 𝒒(!%&) = 𝒒(!)	𝑴  so 𝒒(!) = 𝒒(")	𝑴!

• A stationary distribution 𝝅 is the solution to: 
𝝅	 = 	 𝝅	𝑴,  normalized so that Σ.∈[-]𝜋𝑖 = 1
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The Fundamental Theorem of Markov Chains 

Theorem. Any Markov chain that is 
• irreducible* and
• aperiodic*

has a unique stationary distribution 𝝅.

Moreover, as 𝑡 → ∞, for	all	𝑖, 𝑗, 	 𝑴.2
! = 𝜋2
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*These concepts are way beyond us but they turn out to cover a very large class of               
Markov chains of practical importance.


