CSE 312
Foundations of Computing Il

Lecture 23: Maximum Likelihood Estimation
Continued



Probability vs Statistics

Probability

Given model, predict | [ > P(THHTHH)
data

Statistics

Given data, predict <: THHTHH

model




Parameter Estimation — Workflow

Distribution

Independent

P(x;0)

6 = unknown parameter

_samples
Xy, o, X
from P(x; 0)

Parameter
estimate

| Estimation
Algorithm

9/

—-

Example: coin flip distribution with unknown 6 = probability of heads

Observation: HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate 6



Likelihood of Different Observations

___________________________________________________________________________________________________________________________________________________________________

Definition. The likelihood of independent observations x4, ...., x,, is

n

L(X1, e, Xy | O) = 1_[ P(x;; 0) (Discrete case)
i=1
n

L, X | 0) = Hf(xu 0) (continuous case)
i=1

___________________________________________________________________________________________________________________________________________________________________

Maximum Likelihood Estimation (MLE). Given data x4, ...., x,, find
O such that £(xy, ..., x,, | 0) is maximized!
' 6 = argmax L(xq, ..., x, | 0)

Usually: Solve = 0or 2™ A s X [0) 0 [+check it’s a max!]




General Recipe

1. Input Given n i.i.d. samples x4, ..., x,, from parametric model with
parameter 6.

2. Likelihood Define your likelihood L(x4, ...., x,,| 8).
— For discrete L(X1, e, x| 0) =111 P(x;;0)
— For continuous  L(xq,....,x,| 0) =[[iL, f(x;;6)

3. Log Compute In L(xq, ...., x| 0)

4. Differentiate Compute % In L(xq, ..., %x,| 0)

5. Solve for 8 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum,
but we won’t ask you to do that in CSE 312.



Agenda

e MLE for Normal Distribution <&

e Unbiased and Consistent Estimators
e Odds and ends



n samples x4, ..., x,, € R from Gaussian N (u, 1). Most likely u?




Example - Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance 6% = 1

Goal: estimate 6 expectation

L(X{, ..., x| 0) = ﬁ (\/%_ne_ (Xi_29)2> = (\/%_n)n ﬁe

=1 =1

n2r  ~o (x; — )2
InL(xq,....,x,|0) = —n —Z l

2 L 2
=

_ (xi—6)>

2



Example — Gaussian Parameters Goal: estimate 6= expectation

Normal outcomes x4, ..., x,,, known variance 6% = 1

n
In 27 x; — 0)%
InL(xq,...., x| 0) =—n . (i )

Note: aag (xi_ze)z =1.2. (x; —0)-(—1) =0 — x;
a n
aHlnll(xl, e, X | B) = Z(xl —0) = le — ng
i=1

So... solve Y™ x; —né = 0ford

_______________________________

Y In other words, MLE is the
n | sample mean of the data.




Next: n samples x4, ..., x,,
Most likely 1 and 042

=5

€ R from Gaussian N (i, o).
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Two-parameter estimation

InL(xq,....,x,]| 04,0,) = —

We need to find a solution 8;, 0, to
30, —In L(x4, ..

T —In L(x4, ..

In(27 6,) Z (x; — 6,)?
2 26

.,xnl 61,82) —_ O

"xnl 01'82) — 0
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lnL(xl, ....,xnl 81, 92) — —n

MLE for mean In(2m 6,) i (x; = 61)°

0
55 LCEt e al 61,62) = Z(xl —8,) =0

_______________________________

In other words, MLE of expectation is
(again) the sample mean of the data,
regardless of 6,

What about the variance?
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MLE for Variance

lnL(xl, S | él' 02) — —n

In(27 65) Z": (x; — 0,)°
2 i=1 222
In2m In 6, 1 N N2
= —Nn > —Nn ) _ZHZZL(xl_Hl)
=

n
0 A n 1 A N2
—1In L(x4, ..., 6,,0 =——+—z —0 =0
a02 N (xl - | ! 2) 282 2922 i:l(xl 1)
1 < ~ In other words, MLE of variance is the
A A 2 i
0, = EZ(xl - 0,) ~ population variance of the data.

i=1 ~ (Note that this is not called sample variance!)
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Likelihood - Continuous Case

Definition. The likelihood of independent observations x4, ...., x,, is

LCey, 0 10) = | | FO0116)

________________________________________________________________

_______________________________

n

n
a n 7 ns -
=

MLE estimator for
expectation

MLE estimator for
variance



Agenda

e MLE for Normal Distribution
e Unbiased and Consistent Estimators <4
* Intuition and Bigger Picture

16



When is an estimator good?

Parameter
estimate
Independent //
Distribution _samples | Estimation | 5
P(x;0) X1, X, Algorithm n

from P(x; 0)

6 = unknown parameter

_____________________________________________________________________________________________________________________________________________________________________
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E[prediction] <:

Probability
Given model, predict
data

Statistics
Given data, predict
model

> P(THHTHH)

—

THHTHH
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Example - Coin Flips O Recalllc T

________________________________________________________

i.e., E[0,| = p, where p is the probability that the coin turns out head.

Why?

Because E|ny| = np when p is the true probability of heads.
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Consistent Estimators

Parameter
estimate
Independent //
Distribution _samples | Estimation | 5
P(x; 0) ), CH. & Algorithm it

from P(x; 0)

6 = unknown parameter

_________________________________________________________________________________________________________________________________________________________

' Definition. An estimator is unbiased if E[d,,| = 6 foralln > 1.

_________________________________________________________________________________________________________________________________________________________

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Definition. An estimator is consistent if lim ]E[én] = 0.
| n—00
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Example - Consistency

Normal outcomes X, ..., X,, i.i.d. according to V'(i, %) Assume: g% > 0

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

n n
1 N2 1 N2
_ _ 2 .
SEEYYCEL 5t = =8
=1 1=1
Population variance — Biased! Sample variance - Unbiased!

AN

0,2 converges to same value as 57, i.e., 0%, as n — oo.

®,2 is “consistent”
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Is the variance MLE estimator consistent/biased?

linearity

E[0,2] = ;Z E|(X;—8,)| = in: E|l x, — %zn: X
. <

Consistent,
but biased!

1 —1
:(1__)02:71 g2 — gforn - o
n

. 2 N Consistent
Therefore: E[SZ] = — & I [(Xl- — @u) ] [0,2] = 0% and
unbiased!

Bessel’s correction 23



Agenda

e MLE for Normal Distribution
e Unbiased and Consistent Estimators
* Intuition and Bigger Picture @
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What’s withthen — 1?

S0000000000... why is the MLE for variance biased?
* Intuition:

1
We really want 0% = =Y | E[(X; — pu)*]

n

What we have is E[0 2] = % i1 E [(Xl- — @M)Zl for O, = % 1 Xi

A

O,isnotu!

Each X; is already included as part of @u and so is a bit correlated with it
... S0 X; is a bit closer to ©,, than it would be to the mean .
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Why does it matter?

* When statisticians are estimating a variance from a sample, they
usually divide by n-1 instead of n.

* They and we not only want good estimators (unbiased, consistent)
— They/we also want confidence bounds

* Upper bounds on the probability that these estimators are far the truth
about the underlying distributions

— Confidence bounds are just like what we wanted for our polling problems, but
it turns out that the CLT is not the best thing to use to get them (unless the
variance is known)
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Are there other estimators?

Assume we have prior distribution over what values of 6 are likely.
In other words...

assume that we know P (6) = probability 6 is used, for every 6.

Maximum a-posteriori probability estimation (MAP)

L(x1,...,x,| 0) - P(0)
2o L(x1, ..., xy| 0) - P(6)
= argmaxg L(xq,..,x,|0) - P(0)

Ovap = argmaxg

Note when prior is constant, you get MLE!
29



MLE and MAP in Al and Machine Learning

e MLE and MAP can be defined over distributions that are not
are not nice well-defined families as we have been
considering here

—e.g. o might be the vector of parameters in some Neural Net or
unknown entries in some Bayes Net.

— A variety of optimization methods and heuristic methods are used
to compute/approximate them.
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