
CSE 312

Foundations of Computing II
Lecture 23: Maximum Likelihood Estimation

Continued
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Recap Probability vs Statistics
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Probability
Given model, predict 

data 
Ber 𝑝 = 0.5 𝑃(𝑇𝐻𝐻𝑇𝐻𝐻)

Statistics
Given data, predict 

model 
𝑇𝐻𝐻𝑇𝐻𝐻Ber 𝑝 =? ?



Review Parameter Estimation – Workflow
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Distribution
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋(
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

*𝜃

Parameter 
estimate

𝜃 = unknown parameter

Example: coin flip distribution with unknown 𝜃 = probability of heads  

Observation:  𝐻𝑇𝑇𝐻𝐻𝐻𝑇𝐻𝑇𝐻𝑇𝑇𝑇𝑇𝐻𝑇𝐻𝑇𝑇𝑇𝑇𝑇𝐻𝑇

Goal: Estimate 𝜃



Review Likelihood of Different Observations
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Definition. The likelihood of independent observations 𝑥', … . , 𝑥( is

ℒ 𝑥", … . , 𝑥# 𝜃 =4
$%"

#

ℙ(𝑥$; 𝜃)

ℒ 𝑥", … . , 𝑥# 𝜃 =4
$%"

#

𝑓(𝑥$; 𝜃)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data 𝑥', … . , 𝑥(, find 
*𝜃 such that ℒ 𝑥', … . , 𝑥( *𝜃 is maximized!

*𝜃 = argmax
)

ℒ 𝑥', … . , 𝑥( 𝜃

Usually: Solve &ℒ 𝑥", … . , 𝑥# 𝜃
&(

= 0 or & )* ℒ 𝑥", … . , 𝑥# 𝜃
&(

= 0 [+check it’s a max!]   

(continuous case)



Review General Recipe

1. Input Given 𝑛 i.i.d. samples 𝑥!, … , 𝑥" from parametric model with 
parameter 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥!, … . , 𝑥" 𝜃 .

– For discrete ℒ 𝑥!, … . , 𝑥" 𝜃 = ∏#$!
" 𝑃 𝑥# ; 𝜃

– For continuous ℒ 𝑥!, … . , 𝑥" 𝜃 = ∏#$!
" 𝑓 𝑥# ; 𝜃

3. Log Compute ln ℒ 𝑥!, … . , 𝑥" 𝜃

4. Differentiate Compute #
#$
ln ℒ 𝑥!, … . , 𝑥" 𝜃

5. Solve for *𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.
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Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Odds and ends
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥', … , 𝑥( ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?



Example – Gaussian Parameters

Normal outcomes 𝑥!, … , 𝑥", known variance 𝜎# = 1
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ℒ 𝑥', … . , 𝑥( 𝜃 =9
*+'

(
1
2𝜋

𝑒,
-!,) "

. =
1
2𝜋

(

9
*+'

(

𝑒,
-!,) "

.

Goal: estimate 𝜃 expectation

ln ℒ 𝑥', … . , 𝑥( 𝜃 = − 𝑛
ln 2𝜋
2

−@
*+'

(
𝑥* − 𝜃 .

2



Example – Gaussian Parameters

Normal outcomes 𝑥', … , 𝑥(, known variance 𝜎. = 1
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Goal: estimate 𝜃= expectation

ln ℒ 𝑥", … . , 𝑥# 𝜃 = − 𝑛
ln 2𝜋
2

−B
$%"

#
𝑥$ − 𝜃 +

2

𝜕
𝜕𝜃

ln ℒ 𝑥', … . , 𝑥( 𝜃 =@
*+'

(

(𝑥* − 𝜃) =@
*+'

(

𝑥* − 𝑛𝜃

Note: &
&(

,!-( "

+ = "
+ ⋅ 2 ⋅ 𝑥$ − 𝜃 ⋅ −1 = 𝜃 − 𝑥$

*𝜃 =
∑*( 𝑥*
𝑛

In other words, MLE is the 
sample mean of the data.

So… solve  ∑*+'( 𝑥* − 𝑛 *𝜃 = 0 for *𝜃
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0−1−2−3−4 1 2 3 4 5 6

Next: 𝑛 samples 𝑥!, … , 𝑥" ∈ ℝ from Gaussian 𝒩(𝜇, 𝜎#). 
Most likely 𝜇 and 𝜎#? 



Two-parameter optimization
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Normal outcomes 𝑥!, … , 𝑥"
Goal: estimate 𝜃' = µ = expectation and 𝜃. = 𝜎. = variance

ℒ 𝑥', … . , 𝑥( 𝜃', 𝜃. =
1
2𝜋𝜃.

(

9
*+'

(

𝑒,
-!,)# "

.)"

ln ℒ 𝑥', … . , 𝑥( 𝜃', 𝜃. =

= −𝑛
ln(2𝜋 𝜃.)

2
−@

*+'

(
𝑥* − 𝜃' .

2𝜃.



Two-parameter estimation

ln ℒ 𝑥', … . , 𝑥( 𝜃', 𝜃. = −
ln(2𝜋 𝜃.)

2
−@

*+'

(
𝑥* − 𝜃' .

2𝜃.
We need to find a solution *𝜃', *𝜃. to

𝜕
𝜕𝜃'

ln ℒ 𝑥', … . , 𝑥( 𝜃', 𝜃. = 0

𝜕
𝜕𝜃.

ln ℒ 𝑥', … . , 𝑥( 𝜃', 𝜃. = 0
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MLE for mean
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ln ℒ 𝑥", … . , 𝑥# 𝜃", 𝜃+ = −𝑛
ln(2𝜋 𝜃+)

2
−B

$%"

#
𝑥$ − 𝜃" +

2𝜃+

𝜕
𝜕𝜃'

ln ℒ 𝑥', … . , 𝑥( 𝜃', 𝜃. =
1
𝜃.
@
*

(

(𝑥* − 𝜃') = 0

*𝜃' =
∑*( 𝑥*
𝑛

In other words, MLE of expectation is 
(again) the sample mean of the data, 
regardless of 𝜃.

What about the variance?



MLE for Variance
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ln ℒ 𝑥", … . , 𝑥# D𝜃", 𝜃+ = −𝑛
ln(2𝜋 𝜃+)

2
−B

$%"

#
𝑥$ − D𝜃"

+

2𝜃+

𝜕
𝜕𝜃.

ln ℒ 𝑥', … . , 𝑥( *𝜃', 𝜃. =

*𝜃𝟐 =
1
𝑛
@
*+'

(

𝑥* − *𝜃'
.

In other words, MLE of variance is the 
population variance of the data.
(Note that this is not called sample variance!)

−
𝑛
2𝜃.

+
1
2𝜃..

@
*+'

(

𝑥* − *𝜃'
.

= −𝑛
ln 2𝜋
2

− 𝑛
ln 𝜃+
2

−
1
2𝜃+

B
$%"

#

𝑥$ − D𝜃"
+

= 0



Likelihood – Continuous Case
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Definition. The likelihood of independent observations 𝑥', … . , 𝑥( is

ℒ 𝑥', … . , 𝑥( 𝜃 =9
*+'

(

𝑓(𝑥*|𝜃)

Normal outcomes 𝑥!, … , 𝑥"

*𝜃𝝈𝟐 =
1
𝑛
@
*+'

(

𝑥* − *𝜃1
.*𝜃1 =

∑*( 𝑥*
𝑛

MLE estimator for 
expectation

MLE estimator for 
variance



Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Intuition and Bigger Picture
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When is an estimator good?

17

Definition. An estimator of parameter 𝜃 is an unbiased estimator if

𝔼 *𝜃( = 𝜃.

Distribution
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋(
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

*𝜃(

Parameter 
estimate

𝜃 = unknown parameter

Note: This expectation is over the samples 𝑋", … , 𝑋#



Unbiased estimators
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Probability
Given model, predict 

data 
Ber 𝑝 𝑃(𝑇𝐻𝐻𝑇𝐻𝐻)

Statistics
Given data, predict 

model 
𝑇𝐻𝐻𝑇𝐻𝐻𝐸[𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛]



Example – Coin Flips

Coin-flip outcomes 𝑥!, … , 𝑥", with 𝑛$ heads, 𝑛% tails
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Recall: *𝜃1 =
(%
(

Fact. *𝜃1 is unbiased

i.e., 𝔼 D𝜃. = 𝑝, where 𝑝 is the probability that the coin turns out head. 

Why?

Because 𝔼 𝑛/ = 𝑛𝑝 when 𝑝 is the true probability of heads.



Consistent Estimators
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Definition. An estimator is unbiased if 𝔼 *𝜃( = 𝜃 for all 𝑛 ≥ 1.

Definition. An estimator is consistent if lim
(→3

𝔼 *𝜃( = 𝜃.

Distribution
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋(
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

*𝜃(

Parameter 
estimate

𝜃 = unknown parameter



Example – Consistency 
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Normal outcomes 𝑋', … , 𝑋( i.i.d. according to 𝒩(𝜇, 𝜎.)

LΘ4" =
1
𝑛
@
*+'

(

𝑋* − LΘ1
.

Assume: 𝜎. > 0

𝑆(. =
1

𝑛 − 1
@
*+'

(

𝑋* − LΘ1
.

Sample variance – Unbiased!

LΘ4" converges to same value as 𝑆(., i.e., 𝜎., as 𝑛 → ∞.

Population variance – Biased!

LΘ4" is “consistent”



Is the variance MLE estimator consistent/biased?

23

𝔼[LΘ4"] =
1
𝑛
@
*+'

(

𝔼 𝑋* − LΘ1
.

linearity

=
1
𝑛
@
*+'

(

𝔼 𝑋* −
1
𝑛
@
5+'

(

𝑋5

.

= 1 −
1
𝑛
𝜎. =

𝑛 − 1
𝑛

𝜎.

Therefore: 𝔼 𝑆(. = '
(,'

∑*+'( 𝔼 𝑋* − LΘ1
. = (

(,'
𝔼[LΘ4"] = 𝜎.

→ 𝜎. for 𝑛 → ∞

Bessel’s correction

Consistent, 
but biased!

Consistent 
and 
unbiased!

…



Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Intuition and Bigger Picture
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What’s with the 𝑛 − 1 ?

Soooooooooo… why is the MLE for variance biased?
• Intuition:
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What we have is 𝔼[LΘ4"] =
'
(
∑*+'( 𝔼 𝑋* − LΘ1

. LΘ1 =
'
(
∑*+'( 𝑋*

We really want 𝜎. = '
(
∑*+'( 𝔼 𝑋* − 𝜇 .

for

QΘ. is not 𝜇 ! 

Each 𝑋$ is already included as part of  QΘ. and so is a bit correlated with it
… so 𝑋$ is a bit closer to QΘ. than it would be to the mean 𝜇.



Why does it matter?

• When statisticians are estimating a variance from a sample, they 
usually divide by 𝑛−1 instead of 𝑛. 

• They and we not only want good estimators (unbiased, consistent)
– They/we also want confidence bounds
• Upper bounds on the probability that these estimators are far the truth 

about the underlying distributions

– Confidence bounds are just like what we wanted for our polling problems, but 
it turns out that the CLT is not the best thing to use to get them (unless the 
variance is known)
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Are there other estimators?

Assume we have prior distribution over what values of 𝜃 are likely.
In other words…

assume that we know 𝑃 𝜃 = probability 𝜃 is used, for every 𝜃.

Maximum a-posteriori probability estimation (MAP)

*𝜃678 = argmax9
ℒ 𝑥', … , 𝑥( 𝜃) ⋅ 𝑃(𝜃)

∑) ℒ 𝑥', … , 𝑥( 𝜃) ⋅ 𝑃(𝜃)

= argmax9 ℒ 𝑥', … , 𝑥( 𝜃) ⋅ 𝑃(𝜃)

Note when prior is constant, you get MLE!
29



MLE and MAP in AI and Machine Learning

• MLE and MAP can be defined over distributions that are not 
are not nice well-defined families as we have been 
considering here
– e.g. 𝜃⃗ might be the vector of parameters in some Neural Net or 

unknown entries in some Bayes Net.

– A variety of optimization methods and heuristic methods are used 
to compute/approximate them.
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