CSE 312 Foundations of Computing II

1

Lecture 21: Chernoff Bound & Union Bound

Review Tail Bounds (aka concentration bounds)

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

 $P(X \ge a) \le b$

or

 $P(|X - \mathbb{E}[X]| \ge a) \le b$

Review Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let *X* be a random variable taking only non-negative values. Then, for any $t > 0$,

> $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}$ $\frac{A}{t}$.

Theorem (Chebyshev's Inequality). Let X be a random variable. Then, for any $t > 0$,

> $P(|X - \mathbb{E}[X]| \ge t) \le \frac{\text{Var}(X)}{t^2}$ $\frac{d}{t^2}$.

Agenda

- Chernoff Bound
	- Example: Server Load
	- The Union Bound
- Probability vs statistics – Estimation

Chernoff-Hoeffding Bound

Theorem. Let $X = X_1 + \cdots + X_n$ be a sum of independent RVs, each taking values in [0,1], such that $\mathbb{E}[X] = \mu$. Then... for every $\delta \in [0,1], \quad P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}$ for every $\delta \ge 0$, $P(X - \mu \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}$ both tails right/upper tail

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If $X \sim Bin(n, p)$, then $X = X_1 + \cdots + X_n$ is a sum of independent ${0,1}$ -Bernoulli variables, and $\mu = np$

Note: More accurate versions are possible, but with more cumbersome righthand side (e.g., see textbook)

Review Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let $X \sim Bin(n, p)$. Let $\mu = np =$ $\mathbb{E}[X]$. Then, for any $\delta \in [0,1]$,

$$
P(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 np}{4}}.
$$

Example: $p = 0.5$ $\delta = 0.1$

Chebyshev Chernoff

$$
\mathbb{P}(|X - \mu| \ge \delta \cdot \mu) \le e^{-\frac{\delta^2 \mu}{4}}.
$$

Alice tosses a fair coin n times, what is an upper bound for the probability that she sees heads at least $0.75\times n$ times?

 $p = 1/2$

 $\mu = np = n/2$

Target
$$
\frac{3n}{4} = \frac{n}{2} + \frac{n}{4} = \mu + \frac{1}{2}\mu
$$

Apply Chernoff bound with $\delta =$! . $\frac{2}{n}$

Bound is $e^{-\frac{\delta^2 \mu}{4}} = e^{-\frac{\mu}{4}}$ % $\overline{2}$ $\frac{(\frac{1}{2})}{4} = e^{-\frac{n}{32}}$

Why is the Chernoff Bound True?

Proof strategy (upper tail): For any $s > 0$:

- $P(X \geq (1+\delta) \cdot \mu) = P(e^{tX} \geq e^{t(1+\delta) \cdot \mu})$
- Then, apply Markov + independence: $P\left(e^{tX} \geq e^{t(1+\delta)\cdot \mu}\right) \leq$ $\mathbb{E}[e^{tX}]$ $e^{t(1+\delta)\mu}$ = $\mathbb{E}[e^{tX_1}]\cdots \mathbb{E}[e^{tX_n}]$ $e^{t(1+\delta)\mu}$
- Find t minimizing the right-hand-side.

Agenda

- Chernoff Bound
	- Example: Server Load
	- The Union Bound
- Probability vs statistics – Estimation

Application – Distributed Load Balancing

We have k processors, and $n \gg k$ jobs. We want to distribute jobs evenly across processors.

Strategy: Each job assigned to a randomly chosen processor!

 X_i = load of processor i $X_i \sim \text{Binomial}(n, 1/k)$ $\mathbb{E}[X_i] = n/k$

 $X = \max\{X_1, ..., X_k\}$ = max load of a processor

Question: How close is X to n/k ?

Distributed Load Balancing

```
Claim. (Load of single server) 
                       P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \leq 1/k^4.
```
Example:

- $n = 10^6 \gg k = 1000$
- Perfect load balancing would give load $\frac{n}{k}$ \boldsymbol{k} $= 1000$ per server
- \overline{n} \boldsymbol{k} $+ 4\sqrt{n \ln k}/k \approx 1332$
- *"The probability that server processes more than* 1332 *jobs is at most 1-over-one-trillion!"*

Distributed Load Balancing

13 $P\left(X_i > \mu \left(1 + 4\sqrt{\frac{k \ln k}{n}}\right)\right)$ $\left(\frac{m}{n}\right)$ = $P(X_i > \mu(1+\delta))$ **Proof.** Set $\mu = \mathbb{E}[X_i] =$ \overline{n} \boldsymbol{k} and $\delta = 4 \sqrt{\frac{k}{n}}$ \overline{n} $\ln k$ $\leq e^{-\frac{\delta^2 \mu}{4}} = e^{-4 \ln k}$ **Claim. (Load of single server)** $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right)$ $= P\left(X_i > \frac{n}{\nu}\right)$ \boldsymbol{k} $1 + 4 \int_{0}^{k \ln k}$ \overline{n} $\leq 1/k^4$. $= P(X_i - \mu > \delta \mu)$ 1 $k⁴$ $\delta^2 = 4^2$. $k \ln k$ \overline{n} so $\delta^2 \mu = 4^2 \ln k$

What about the maximum load?

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \leq 1/k^4.$

What about $X = \max\{X_1, ..., X_k\}$?

Note: $X_1, ..., X_k$ are <u>not</u> (mutually) independent!

In particular: $X_1 + \cdots + X_k = n$ When non-trivial outcome of one RV *can be derived from other RVs, they are non-independent.*

Detour – Union Bound – A nice name for something you already know

Theorem (Union Bound). Let $A_1, ..., A_n$ be arbitrary events. Then,

Intuition (3 evts.):

Detour – Union Bound - Example

Suppose we have $N = 200$ computers, where each one fails with probability 0.001.

What is the probability that at least one server fails?

Let A_i be the event that server *i* fails. Then event that at least one server fails is $\bigcup A_i$ $i=1$ \overline{n}

$$
P\left(\bigcup_{i=1}^{N} A_i\right) \le \sum_{i=1}^{N} P(A_i) = 0.001N = 0.2
$$

What about the maximum load?

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \leq 1/k^4.$

What about $X = \max\{X_1, ..., X_k\}$?

$$
P\left(X > \frac{n}{k} + 4\sqrt{n \ln k / k}\right) = P\left(\left\{X_1 > \frac{n}{k} + 4\sqrt{n \ln k / k}\right\} \cup \dots \cup \left\{X_k > \frac{n}{k} + 4\sqrt{n \ln k / k}\right\}\right)
$$

Union bound

$$
\leq P\left(X_1 > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) + \dots + P\left(X_k > \frac{n}{k} + 4\sqrt{n \ln k / k}\right)
$$

$$
\leq \frac{1}{k^4} + \dots + \frac{1}{k^4} = k \times \frac{1}{k^4} = \frac{1}{k^3}
$$

What about the maximum load?

Claim. (Load of single server) $P\left(X_i > \frac{n}{k} + 4\sqrt{\frac{n \ln k}{k}}\right) \leq 1/k^4.$

Claim. (Max load) Let $X = \max\{X_1, ..., X_k\}$. $P\left(X>\frac{n}{k}+4\sqrt{\frac{n\ln k}{k}}\right)\leq 1/k^3.$

Example:

- $n = 10^6 \gg k = 1000$
- $\frac{n}{k} + 4\sqrt{n \ln k / k} \approx 1332$
- *"The probability that some server processes more than* 1332 *jobs is at most 1-over-one-billion!"*

Using tail bounds

- Tail bounds are *guarantees*, unlike our use of CLT
- Often, we actually start with a target upper bound on failure probability
	- In the load-balancing example, the value of δ in terms of n and k was worked out in order to get failure probability $\leq 1/k^4$
		- We didn't start out with this weird value
	- See example in section and on homework
- We use these bounds to design (randomized) algorithms or analyze their guaranteed level of success.

Agenda

- Chernoff Bound
	- Example: Server Load
	- The Union Bound
- Probability vs statistics
	- Estimation

Probability vs Statistics

Recall Formalizing Polls

Population size N , true fraction of voting in favor p , sample size n . **Problem:** We don't know

Polling Procedure

for $i = 1, ..., n$:

1. Pick uniformly random person to call (prob: $1/N$)

2. Ask them how they will vote

$$
X_i = \begin{cases} 1, & \text{voting in favor} \\ 0, & \text{otherwise} \end{cases}
$$

Report our estimate of p :

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

 $\mathbb{E}[X_i]$ $\qquad \qquad \text{Var}(X_i)$ a. Bernoulli p $p(1-p)$ What type of r.v. is X_i ?

Recall Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for <u>unknown</u> p

Goal: Estimate

We did this by computing
$$
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

Why is that a good estimate for p ?

More generally …

In estimation we….

- Assume: we know the type of the random variable that we are observing samples from
	- We just don't know the parameters, e.g.
		- the bias p of a random coin Bernoulli (p)
		- The arrival rate λ for the Poisson(λ) or Exponential(λ)
		- The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data
	- Next time: "best" = parameters that would be "most likely" to generate the observed samples