
CSE 312

Foundations of Computing II
Lecture 21: Chernoff Bound & Union Bound
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Review Tail Bounds (aka concentration bounds)

Putting a limit on the probability that a random variable is in the 
“tails” of the distribution (e.g., not near the middle).

Usually statements in the form of

𝑃 𝑋 ≥ 𝑎 ≤ 𝑏

or

𝑃 |𝑋 − 𝔼 𝑋 | ≥ 𝑎 ≤ 𝑏
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Review Markov’s and Chebyshev’s Inequalities
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Theorem (Markov’s Inequality). Let 𝑋 be a random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

𝑃 𝑋 ≥ 𝑡 ≤ 𝔼[#]
%

. 

Theorem (Chebyshev’s Inequality). Let 𝑋 be a random variable. Then, 
for any 𝑡 > 0,

𝑃 |𝑋 − 𝔼[𝑋]| ≥ 𝑡 ≤ &'( #
%!

. 



Agenda

• Chernoff Bound
– Example: Server Load
– The Union Bound

• Probability vs statistics
– Estimation
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Chernoff-Hoeffding Bound
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Theorem. Let 𝑋 = 𝑋) +⋯+ 𝑋* be a sum of independent RVs, each 
taking values in [0,1], such that 𝔼[𝑋] = 𝜇. Then…

for every 𝛿 ∈ [0,1], 𝑃 𝑋 − 𝜇 ≥ 𝛿 ⋅ 𝜇 ≤ 𝑒+
"!#
$

for every  𝛿 ≥ 0 , 𝑃 𝑋 − 𝜇 ≥ 𝛿 ⋅ 𝜇 ≤ 𝑒+
"!#
$

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If 𝑋~Bin(𝑛, 𝑝), then 𝑋 = 𝑋! +⋯+ 𝑋" is a sum of independent     
{0,1}-Bernoulli variables, and 𝜇 = 𝑛𝑝

Note: More accurate versions are possible, but with more cumbersome right-
hand side (e.g., see textbook)

both tails

right/upper tail



Review Chernoff-Hoeffding Bound – Binomial Distribution
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Theorem. (CH bound, binomial case) Let 𝑋~Bin(𝑛, 𝑝). Let 𝜇 = 𝑛𝑝 =
𝔼[𝑋]. Then, for any 𝛿 ∈ [0,1],

𝑃 𝑋 − 𝜇 ≥ 𝛿 ⋅ 𝜇 ≤ 𝑒+
"!%&
$ . 

Example: 
𝑝 = 0.5
𝛿 = 0.1

𝑛
1
𝛿! ⋅

1
𝑛 ⋅

1 − 𝑝
𝑝 𝑒"

#!$%
&

800 0.125 0.3679

2600 0.03846 0.03877

8000 0.0125 0.00005

80000 0.00125 3.72 ⨉ 10-44

ChernoffChebyshev



Review Chernoff Bound – Example 

Alice tosses a fair coin 𝑛 times, what is an upper bound for the 
probability that she sees heads at least 0.75×𝑛 times? 
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ℙ 𝑋 − 𝜇 ≥ 𝛿 ⋅ 𝜇 ≤ 𝑒+
!"#
$ . 

𝜇 = 𝑛𝑝 = 𝑛/2

Target ,"- =
"
. +

"
- = 𝜇 + !

.𝜇

Apply Chernoff bound with 𝛿 = !
.

𝑝 = 1/2

Bound is 𝑒+
!"#
$ = 𝑒+

%
"
" &
"

$ = 𝑒+
&
'"



Chernoff vs Chebyshev – Summary 
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1
𝛿! ⋅

1
𝑛 ⋅
1 − 𝑝
𝑝

𝑒"
#!$%
&

Chebyshev, 
linear
decrease in 𝑛

Chernoff, exponential
decrease in 𝑛

vs



Why is the Chernoff Bound True?

Proof strategy (upper tail): For any 𝑠 > 0:

• 𝑃 𝑋 ≥ (1 + 𝛿) ⋅ 𝜇 = 𝑃 𝑒!" ≥ 𝑒!($%&)⋅)

• Then, apply Markov + independence:

𝑃 𝑒!" ≥ 𝑒!($%&)⋅) ≤
𝔼 𝑒!"

𝑒! $%& ) =
𝔼 𝑒!"! ⋯𝔼 𝑒!""

𝑒! $%& )

• Find 𝑡 minimizing the right-hand-side.  
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Agenda

• Chernoff Bound
– Example: Server Load
– The Union Bound

• Probability vs statistics
– Estimation
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Application – Distributed Load Balancing
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We have 𝑘 processors, and 𝑛 ≫ 𝑘 jobs. 
We want to distribute jobs evenly across processors.  

Strategy: Each job assigned to a randomly chosen processor!

𝑋, = load of processor 𝑖 𝔼[𝑋,] = 𝑛/𝑘

Question: How close is 𝑋 to 𝑛/𝑘? 

𝑋/ ~ Binomial 𝑛, 1/𝑘

𝑋 = max{𝑋), … , 𝑋-} = max load of a processor



Distributed Load Balancing
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Claim. (Load of single server) 

𝑃 𝑋, >
*
-
+ 4 * ./ -

-
≤ 1/𝑘0. 

Example:
• 𝑛 = 101 ≫ 𝑘 = 1000
• Perfect load balancing would give load  *

-
= 1000 per server

• *
-
+ 4 𝑛 ln 𝑘 /𝑘 ≈ 1332

• “The probability that server 𝑖 processes more than 1332 jobs is at most 
1-over-one-trillion!”



Distributed Load Balancing
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𝑃 𝑋, > 𝜇 1 + 4 - ./ -
*

Proof. Set 𝜇 = 𝔼[𝑋,] =
*
-

and 𝛿 = 4 -
*
ln 𝑘

= 𝑃 𝑋, > 𝜇 1 + 𝛿

≤ 𝑒+
2!3
0

Claim. (Load of single server)

𝑃 𝑋, >
*
-
+ 4 * ./ -

-
= 𝑃 𝑋, >

*
-
1 + 4 - ./ -

*
≤ 1/𝑘0. 

= 𝑃 𝑋, − 𝜇 > 𝛿𝜇

= 𝑒+0 ./ - =
1
𝑘0

𝛿! = 4! ⋅
𝑘 ln 𝑘
𝑛

so 𝛿!𝜇 = 4! ln 𝑘



What about the maximum load?
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Claim. (Load of single server)

𝑃 𝑋, >
*
-
+ 4 * ./ -

-
≤ 1/𝑘0. 

What about 𝑋 = max{𝑋), … , 𝑋-}?

Note: 𝑋), … , 𝑋- are not (mutually) independent! 
In particular: 𝑋) +⋯+ 𝑋- = 𝑛 When non-trivial outcome of one RV 

can be derived from other RVs, they 
are non-independent.



Detour – Union Bound – A nice name for something you already 
know

Intuition (3 evts.):
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Theorem (Union Bound). Let 𝐴), … , 𝐴* be arbitrary events. Then,

𝑃 Q
,=)

*

𝐴, ≤R
,=)

*

𝑃(𝐴,)

𝐴) 𝐴>

𝐴?



Detour – Union Bound - Example

Suppose we have 𝑁 = 200 computers, where each one fails 
with probability 0.001. 
What is the probability that at least one server fails? 

Let 𝐴* be the event that server 𝑖 fails. 
Then event that at least one server fails is

𝑃 ?
*+$

,

𝐴* ≤ @
*+$

,

𝑃 𝐴* = 0.001𝑁 = 0.2

16

>
/0!

"

𝐴/



What about the maximum load?
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Claim. (Load of single server) 

𝑃 𝑋, >
*
-
+ 4 * ./ -

-
≤ 1/𝑘0. 

What about 𝑋 = max{𝑋), … , 𝑋-}?

𝑃 𝑋 >
𝑛
𝑘
+ 4 𝑛 ln 𝑘 /𝑘 = 𝑃 𝑋! >

𝑛
𝑘
+ 4 𝑛 ln 𝑘 /𝑘 ∪ ⋯∪ 𝑋1 >

𝑛
𝑘
+ 4 𝑛 ln 𝑘 /𝑘

≤ 𝑃 𝑋! >
"
1
+ 4 " 23 1

1
+⋯+ 𝑃 𝑋1 >

"
1
+ 4 𝑛 ln 𝑘 /𝑘

Union bound
≤ !

1$
+⋯+ !

1$
= 𝑘× !

1$
= !

1'



What about the maximum load?
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Claim. (Load of single server)

𝑃 𝑋, >
*
-
+ 4 * ./ -

-
≤ 1/𝑘0. 

Claim. (Max load) Let 𝑋 = max{𝑋), … , 𝑋-}. 

𝑃 𝑋 > *
-
+ 4 * ./ -

-
≤ 1/𝑘?. 

Example:
• 𝑛 = 10! ≫ 𝑘 = 1000
• "

#
+ 4 𝑛 ln 𝑘 /𝑘 ≈ 1332

• “The probability that some server processes more than 1332
jobs is at most 1-over-one-billion!”



Using tail bounds

• Tail bounds are guarantees, unlike our use of CLT

• Often, we actually start with a target upper bound on failure 
probability
– In the load-balancing example, the value of 𝛿 in terms of 𝑛 and 𝑘 was 

worked out in order to get failure probability ≤ 1/𝑘#
• We didn’t start out with this weird value

– See example in section and on homework

• We use these bounds to design (randomized) algorithms or 
analyze their guaranteed level of success.
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Agenda

• Chernoff Bound
– Example: Server Load
– The Union Bound

• Probability vs statistics
– Estimation
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Probability vs Statistics
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Probability
Given model, predict 

data 
Ber 𝑝 = 0.5 𝑃(𝑇𝐻𝐻𝑇𝐻𝐻)

Statistics
Given data, predict 

model 
𝑇𝐻𝐻𝑇𝐻𝐻Ber 𝑝 =? ?



Recall Formalizing Polls
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Polling Procedure
for 𝑖 = 1,… , 𝑛 :

1. Pick uniformly random person to call (prob: 1/𝑁)
2. Ask them how they will vote

𝑋, = T1, voting in favor
0, otherwise

Report our estimate of 𝑝: �̀� = )
*
∑,=)* 𝑋,

Population size 𝑁, true fraction of 
voting in favor 𝑝, sample size 𝑛.

Problem: We don’t know 𝑝

𝔼[𝑋/] Var(𝑋/)
a. Bernoulli     𝑝 𝑝(1 − 𝑝)

What type of r.v. is 𝑋*?



Recall Formalizing Polls
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We assume that poll answers 𝑋), … , 𝑋* ~ Ber(𝑝) i.i.d. for unknown 𝑝

Goal: Estimate 𝑝

We did this by computing  �̂� = )
*
∑,=)* 𝑋,

Why is that a good estimate for 𝑝?



More generally …

In estimation we…. 
• Assume: we know the type of the random variable that we 

are observing samples from
– We just don’t know the parameters, e.g.
• the bias 𝑝 of a random coin Bernoulli(𝑝)
• The arrival rate 𝜆 for the Poisson(𝜆) or Exponential(𝜆)
• The mean 𝜇 and variance 𝜎 of a normal 𝒩(𝜇, 𝜎)

• Goal: find the “best” parameters to fit the data
• Next time:  “best” = parameters that would be “most likely” to generate 

the observed samples
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